首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   3篇
林业   16篇
农学   5篇
基础科学   1篇
  19篇
综合类   4篇
农作物   12篇
水产渔业   13篇
畜牧兽医   23篇
园艺   4篇
植物保护   15篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1975年   2篇
  1969年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Abstract

A novel densitometer consisting of a continuous wave near-infrared (NIR) laser source and an avalanche photodiode module as the detector has been designed, which can rapidly and non-destructively measure the density of wood. The wood density of a small area (3.14 mm2) at the radial-transverse face was continuously estimated using the intensity of the transmitted light with the aid of the modified Lambert-Beer law. By conducting a validity evaluation with statistical coefficients, it was shown that the constructed system could obtain the sharp density profile compatible with X-ray densitometer [Root mean squared error of calibration (RMSEC) = 0.045 g cm?3, Root mean squared error of validation (RMSEV) = 0.046 g cm?3). It was concluded that the constructed NIR device has high performance from the viewpoint of operability, measuring time and safety.  相似文献   
2.
Fisheries Science - In aquaculture, periodic measurement of fish body size is required to suitably assess growth progress. The aim of this study is to monitor the growth of free-swimming red sea...  相似文献   
3.
Soil N mineralization is affected by microbial biomass and respiration, which are limited by available C and N. To examine the relationship between C and N for soil microbial dynamics and N dynamics, we conducted long-term laboratory incubation (150 days) after C and N amendment and measured changes in C and N mineralization, microbial biomass C, and dissolved C and N throughout the incubation period. The study soil was volcanic immature soil from the southern part of Japan, which contains lower C and N compared with other Japanese forest soils. Despite this, the area is covered by well-developed natural and plantation forests. Carbon amendment resulted in an increase in both microbial biomass and respiration, and net N mineralization decreased, probably due to increasing microbial immobilization. In contrast, N amendment resulted in a decrease in microbial respiration and an increase in net N mineralization, possibly due to decreased immobilization by microbes. Amendment of both C and N simultaneously did not affect microbial biomass and respiration, although net N mineralization was slightly increased. The results suggested that inhibitory effect on microbial respiration by N amendment should be reduced if carbon availability is higher. Thus, soil available C may limit microbial biomass and respiration in this volcanic immature soil. Even in immature soil where C and N substrate is low, soil C, such as plant root exudates and materials from above- and belowground dead organisms, might help to maintain microbial activity and N mineralization in this study site.  相似文献   
4.
5.
Leaf-fall phenology was studied in a cool–temperate deciduous broad-leaved forest in central Japan in relation to the topographic environmental gradients that occur along a short mountain slope. Leaf-fall phenology was described quantitatively using data from leaf litter collected along the slope. In autumn, leaf fall at the study site tended to occur slightly earlier on the upper slope than on the lower slope. This pattern was found at both the stand and the species levels. Our results suggest that leaf-fall phenology may be affected by difference in microclimatic conditions, because environmental conditions are thought to be more severe on the upper slope than on the lower slope. The less intensive methods used in this study, the litter trap method, and Dixon’s model succeeded in quantifying the phenological patterns of leaf fall within stands and within species along the short mountain slope.  相似文献   
6.
We compared the greenhouse gas (GHG) emissions from a log pile (LP) to those from a sand compaction pile (SCP) and from cement deep mixing (CDM) as measures against soil liquefaction, assuming that forest and waste management scenarios influence the GHG (CO2, CH4, and N2O) balance of wood. We found little difference between the LP and SCP methods with respect to GHG emissions from fossil fuel and limestone consumption. However, GHG emissions from the CDM method were seven times higher than emissions from the LP method. In the GHG balance of wood, when the percentage of CH4 emissions from carbon in underground wood was lower than 3.3%, permanent storage in the log achieved greater reductions in GHG emissions than using the waste log as fuel in place of coal or heavy oil. In order to obtain reductions in GHG emissions by replacing SCPs or CDM with LPs, sustainable forest management with reforestation and prevention of CH4 emissions from the underground log are essential. Using reforestation, permanent storage of the log, no CH4 emission from the log, and using logging residues instead of coal, the LP can achieve reductions in GHG emissions of 121 tonnes of CO2 per 100 m2 of improvement area by replacing CDM.  相似文献   
7.
8.
9.
Forest development in temperate regions is considered to be a global carbon sink. Many studies have examined forest development after harvesting or fire from aboveground (e.g., biomass) or belowground (e.g., soil nutrient) perspectives. However, few studies have explored forest development from both perspectives simultaneously in cool-temperate forests in Japan. In this study, we examined changes over 105 years in both aboveground and belowground components during secondary natural succession. The aboveground biomass increased for 50 years and reached a plateau in a 105-year-old stand. The N mineralization rate increased during succession for 50 years, but showed a decline in the 105-year-old stand due to the decrease in the nitrification rate in late succession. The percent nitrification (i.e., relative contribution of nitrification to N mineralization) decreased significantly with increasing forest stand age. The N mineralization rates had significant relationships with N concentrations of the dominant tree foliage and litter fall and with the amount of litter fall N. Meanwhile, other belowground properties (i.e., soil pH, phenol concentration, soil microbial respiration, and litter mass loss) did not show any significant relationship with forest stand age. This may be because the soil at the study sites was heterogeneous and consisted of Cambisols and Andosols, the latter of which originally has high organic matter content, and thus may have buffered the effect of the aboveground development. These results indicate that belowground N dynamics are more closely associated with aboveground development than other belowground properties in these forests.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号