首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   1篇
基础科学   3篇
综合类   5篇
  2018年   1篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
赵恒科  蓝月  南灿  胡月  饶萍  田亚  严伟  钱坤  何林 《中国农业科学》2016,49(14):2700-2710
【目的】农药复配可扩大防治谱、降低单剂用药量和生产成本,延长药剂使用寿命。开发能耗低、稳定性好的纳米乳剂,使农药有效成分可以通过剂型加工更好地发挥其生物效果,提高药效。【方法】采用药膜法测定两种杀虫杀螨剂甲氰菊酯、丁氟螨酯对朱砂叶螨(Tetranychus cinnabarinus)的毒力,采用共毒因子法评价两个药剂的增效作用,共毒系数法进行复配农药最佳配比筛选,最后对配比与共毒系数进行数学模型方程拟合对最佳配比进行筛选;并在获得最佳配比的基础上采用低能乳化法加工成8%甲氰菊酯·丁氟螨酯纳米乳剂,根据联合国粮农组织纳米乳剂特性及基本要求,进行8%甲氰菊酯·丁氟螨酯纳米乳剂质量控制指标检测;并通过接触角和黏附功的测定初步探究纳米乳剂的性能。【结果】药膜法测定甲氰菊酯、丁氟螨酯处理朱砂叶螨雌成螨24 h后LC_(50)分别为711.62、4.32 mg·L~(-1),共毒因子法测定结果表明,甲氰菊酯和丁氟螨酯复配在质量比18﹕1和165﹕1之间具有增效作用,增效配比区间较宽,两者复配可行。共毒系数法结果表明,甲氰菊酯与丁氟螨酯的质量比为50﹕1时,共毒系数(CTC)最高,CTC=209.96。通过方程拟合,甲氰菊酯·丁氟螨酯配比与共毒系数的数学模型为y=-216.86x2+19201x-424807,R~2=0.864,理论最佳配比约为39﹕1(质量比),CTC=211.91,进一步通过共毒系数法对理论最佳配比验证得:甲氰菊酯﹕丁氟螨酯=39﹕1时,毒力回归方程为y=0.66x+3.8,r=0.9757,LC_(50)=60.96 mg·L~(-1),共毒系数(CTC)高达215.36。由以上结果可知理论最佳配比与实际最佳配比增效作用基本一致,说明筛选的甲氰菊酯和丁氟螨酯最佳配比具有实际可靠性。最终确定39﹕1(甲氰菊酯﹕丁氟螨酯质量比)为最佳配比进行纳米乳剂的研制。通过溶剂、乳化剂、水质的筛选,得到8%甲氰菊酯·丁氟螨酯纳米乳剂的最佳制剂配方,优化配方为:甲氰菊酯7.8%,丁氟螨酯0.2%,溶剂10%(溶剂油S~(-1)50#﹕二甲苯=4﹕1),乳化剂9%—11%(十二烷基苯磺酸钙﹕聚氧乙烯脂肪酸酯=2﹕3),丙三醇2%,水补足至100%。所研制8%甲氰菊酯·丁氟螨酯纳米乳剂外观呈透明均相液体,乳液稳定性、低温稳定性、热贮稳定性、经时稳定性等指标均合格,稀释200倍呈淡蓝色均相透明液体且分散性良好。8%甲氰菊酯·丁氟螨酯纳米乳剂与两种单剂相比接触角更小,黏附功大,纳米乳液雾滴与靶标结合得更加牢固,药液不容易从靶标上洒落,更有利于植物对药液的吸收,可提高药效。【结论】采用共毒因子法、共毒系数法与拟合方程相结合进行最佳配比的筛选,其结果可以更全面、客观地反映出二元复配剂的增效情况,对农药复配有一定的指导价值,同时纳米乳剂的引入对于改善当前农药剂型结构具有重要意义。  相似文献   
2.
以蜂胶醇提物为原料,橄榄油为食品级油相,吐温80为表面活性剂,无水乙醇为助表面活性剂,在确定最佳配比的基础上制备O/W型蜂胶纳米乳液,研究了不同均质压力参数(0,40,80 MPa)设定条件下乳化液的平均粒径与分布情况。研究结果表明,均质压力对乳化液的平均粒径与分散指数具有显著影响,经80 MPa高压均质处理所得的乳化液粒子平均直径为(1432±1.4)nm,且粒径分布均一,具有较好的稳定性。  相似文献   
3.
【目的】筛选制备W/O型黄芪多糖(APS)、紫锥菊提取物(EM)纳米乳佐剂的最佳配方,并考察该纳米乳佐剂的免疫效应。【方法】根据伪三元相图中纳米乳区面积的大小并结合肉眼观察,筛选制备黄芪多糖与紫锥菊提取物纳米乳佐剂的配方,观测制剂的形态、粒径分布、pH、黏度及稳定性;以卵清白蛋白(OVA)为模式抗原,用含不同质量黄芪多糖与紫锥菊提取物的纳米乳佐剂免疫小鼠后,测定并比较血清OVA诱导特异性抗体水平的变化。【结果】制备黄芪多糖与紫锥菊提取物纳米乳的配方中,Tween 80、Span 80、石蜡油、乙醇、水的体积比为3∶1∶1.5∶0.5∶1;所得纳米乳为淡黄色透明液体,透射电镜下呈圆球形,平均粒径45.2nm,pH 6.71,黏度4.60s,理化性质较稳定。用黄芪多糖与紫锥菊提取物纳米乳和抗原同时免疫小鼠后,未见任何不良反应,且用黄芪多糖与紫锥菊提取物纳米乳免疫的各试验组小鼠,其血清OVA特异性IgG、IgG1和IgG2a抗体水平均显著高于OVA抗原对照组(P<0.05),而各试验组的IgG、IgG1和IgG2a抗体水平无显著差异;只有APS 200μg+EM 200μg+OVA抗原组和APS400μg+EM 200μg+OVA抗原组的IgG、IgG1和IgG2a抗体水平显著高于铝胶(Alum)+OVA抗原组(P<0.05),且以APS 400μg+EM 200μg+OVA抗原组的3种抗体水平最高。【结论】黄芪多糖与紫锥菊提取物纳米乳佐剂制备方法简单,稳定性好,能显著增强机体抗体的产生能力,同时可以增强Th1和Th2的免疫应答反应,具有开发佐剂的应用价值。  相似文献   
4.
鱼油纳米乳液运载体系构建与稳定性研究   总被引:1,自引:0,他引:1  
以大豆蛋白-磷脂酰胆碱作为复合乳化剂,采用高压均质技术制备鱼油纳米乳液,研究了大豆蛋白质量分数、磷脂酰胆碱质量分数、鱼油质量分数、均质压力对鱼油纳米乳液平均粒径、PDI、ζ-电位、浊度等性质影响,确定了最佳制备工艺参数为:大豆蛋白质量分数2%,磷脂酰胆碱质量分数0.2%,鱼油质量分数1.5%,均质压力100 MPa,得到鱼油纳米乳液的平均粒径为(245±3.1)nm,PDI为0.226±0.019,ζ-电位为(-30.2±0.6)mV,浊度为(2 413±34.7)cm~(-1)。通过超高分辨显微镜观测到鱼油被包埋于复合乳化剂中且均匀分布在乳液体系中;通过稳定性研究发现:大豆蛋白-磷脂酰胆碱鱼油纳米乳液分别在4℃和25℃储存30 d均稳定;对一定浓度的Na+有较好的抗性;酸性条件不稳定,碱性条件下稳定。  相似文献   
5.
[目的]研究3种不同配方青蒿琥酯(Artesunate,AS)纳米乳的急性毒性,筛选出安全性最好的配方。[方法]采用小鼠灌胃给药,观察14 d内小鼠的活动情况及死亡情况,记录小鼠的死亡数。用改良寇氏法测定各配方AS纳米乳的半数致死量(LD50)及可信限。[结果]AS1、AS2纳米乳的LD50分别为7.76和7.56 g/kg;可信限为6.90~8.68和6.42~8.87。AS3纳米乳的LD0为15 g/kg。[结论]在国内首次成功制备的3种不同配方AS纳米乳,均属于实际无毒范围,AS3纳米乳较之AS1、AS2更安全。  相似文献   
6.
以辛烯基琥珀酸淀粉酯为乳化剂,采用超声波乳化的方法制备了姜油纳米乳液,并探讨了环境因素对其稳定性的影响。通过单因素试验和响应面优化试验,确定以乳化性能良好的Purity Gum 2000(PG)和Hi Cap 100(HC)2种辛烯基琥珀酸淀粉酯进行纳米乳液制备。以PG为乳化剂时,最佳工艺参数为超声功率430 W,姜油质量分数9%,乳化剂质量浓度0.1 g/m L,所得纳米乳液的平均粒径为(148±4.23)nm。以HC为乳化剂时,最佳工艺参数为超声功率410 W,姜油质量分数9.2%,乳化剂质量浓度0.125 g/m L,所得纳米乳液平均粒径为(162±3.25)nm。PG和HC姜油纳米乳液均具有良好的p H值、离子强度抵抗性。酸性环境有利于姜油纳米乳液的稳定性保持。Ca离子浓度变化对姜油纳米乳液稳定性的影响大于Na离子,PG姜油纳米乳液对离子强度的抵抗能力大于HC姜油纳米乳液。在姜油纳米乳液中添加适量的麦芽糊精可以起到抗冻的作用,PG姜油纳米乳液的抗冻性能优于HC姜油纳米乳液。  相似文献   
7.
纳米乳是由水相、油相、乳化剂和助乳化剂组成的,整体为半透明或透明的体系,粒径为10~100 nm,具有很窄的粒径分布,近年来成为药剂学领域的研究热点。文章综述了纳米乳的组分、制备方法及其在制剂学领域的新应用。  相似文献   
8.
研究了以辛烯基琥珀酸酯化淀粉为乳化剂、由超声波技术制备的姜油纳米乳液的微观结构、流变性、抑菌特性及贮藏稳定性。透射电子显微镜图像显示,姜油纳米乳液的制备改善了姜油乳液的微观结构。稳态扫描结果表明,姜油纳米乳液呈典型的剪切变稀流变行为,具有牛顿流体特征,频率扫描结果表明其具有粘弹性。纳米包埋体系对姜油的抗菌能力没有显著影响,PG Purity Gum 2000(PG)和Hi-Cap 100(HC)姜油纳米乳液均有较好的抑菌能力。在4、25、55℃贮藏28 d后,姜油纳米乳液物理稳定性良好,姜辣素的保留率在80%以上,5种主要挥发性风味物质中的α-姜黄烯和α-姜烯变化不显著。PG姜油纳米乳液贮藏稳定性优于HC姜油纳米乳液。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号