首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   29篇
  国内免费   15篇
林业   22篇
农学   27篇
基础科学   7篇
  222篇
综合类   129篇
农作物   6篇
水产渔业   16篇
畜牧兽医   53篇
园艺   3篇
植物保护   2篇
  2024年   1篇
  2023年   9篇
  2022年   9篇
  2021年   17篇
  2020年   16篇
  2019年   17篇
  2018年   18篇
  2017年   21篇
  2016年   28篇
  2015年   20篇
  2014年   18篇
  2013年   29篇
  2012年   32篇
  2011年   20篇
  2010年   17篇
  2009年   25篇
  2008年   27篇
  2007年   27篇
  2006年   19篇
  2005年   16篇
  2004年   14篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   10篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   15篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有487条查询结果,搜索用时 31 毫秒
61.
Background, Aim and Scope  The toxicity of contaminated sediments should be evaluated considering the direct exposure of laboratory organisms to whole sediments and the indirect exposure to elutriates or extracts (Tay et al. 1992, Byrne and Halloran 1999, Nendza 2002). The alga Dunaliella tertiolecta is indicated for the use in toxicity bioassays because it is highly sensitive to several xenobiotics. Harpacticoid copepods have been already used for toxicity testing and Tigriopus fulvus is a promising Mediterranean target-species in ecotoxicology (Todaro et al. 2001, Faraponova et al. 2003, Pane et al. 2005a). In this study, the toxicity of sediments collected in harbour sites of the Northeastern Adriatic Sea was evaluated by growth inhibition test with free living and alginate-immobilized Dunaliella tertiolecta and acute toxicity test with nauplii and adult Tigriopus fulvus with the aim of pointing out the importance to utilize model organisms from different trophic levels in sediment ecotoxicology. Methodology  Elutriates and whole sediments were tested on free living and immobilized (Pane et al. 1998) algal cells, and on laboratory reared copepods. Free-living D. tertiolecta were exposed to diluted elutriates in a static, multi-well plate system. Naalginate immobilized D. tertiolecta were placed in polystyrene inserts fitted with polyester mesh bottoms and exposed to a thin layer (2 mm) of whole sediments in multi-well plates (EPS 1992, Pane and Bertino 1999). Toxicity tests with copepods were carried out on Tigriopus fulvus nauplii (elutriates) and adults (whole sediments and elutriates). Same-aged nauplii useful for toxicity tests were obtained by egg sac detaching and consequent hatching stimulation (Pane et al. 2006). Newborn nauplii (I–II stage) were exposed to elutriates in multi-well plates provided with polystyrene inserts. Adult T. fulvus maintained in polystyrene inserts fitted with polyester mesh bottoms were placed in contact with a thin layer (2 mm) of whole sediment placed on multi-well plate bottoms. All end-points were evaluated after 96 h. Results  In general, the effects increased with the increasing of elutriate concentration up to 50%; the stimulation or inhibition of algal growth was statistically significant in comparison to the control. The inhibiting elutriates induced EC50 variations of algal growth ranging from 66.9% to 74.3%. The mortality of T. fulvus nauplii was always < 25% after treatment with 100% elutriates and < 10% after treatment with 50% dilution; no effect was shown up with 25% dilution; therefore LC50 was not calculable. The effect of elutriates was negligible on adult copepods and LC50 values were never calculable; percent mortality always resulted in < 10% after treatment with whole sediments. Discussion  Both experimental systems gave substantially similar results after exposition to whole sediments and elutriates. During the experiment with algal cells, the immobilization in Na-alginate and the employment of inserts which allowed the contact of organisms with sediments and their easy counting were particularly useful. Likewise, the employment of inserts of adequate mesh size in the tests with copepods allowed the contact of organisms with the sediment and made organism handling and counting easy, as well as the evaluation of mortality. The methodology here described and the utilization of the proposed test-species could have an importance also considering that the current trend in ecotoxicological research is towards finding the most appropriate organism for specific areas of concern by using indigenous species (Mariani et al. 2006) and towards the major significance of chronic and reproductive end-points. Conclusions  Based on the above results, it can be stated that the bioassay with Dunaliella tertiolecta could be a good estimation tool for the ecotoxicological assessment of marine sediments. The immobilization of algae in Na-alginate was seen to be useful to evaluate the toxicity of whole sediments; the employment of polystyrene inserts allowed an improvement of the procedures. T. fulvus nauplii and adults, as other harpacticoids such as Tigriopus japonicus (Yoon et al. 2006), satisfy the basic criteria for the employment of a standard species in marine bioassays. To date only pelagic Acartia tonsa are utilized in the standardized procedure to evaluate the risk assessment of chemicals or wastewaters (ISO 1999). As, on the contrary, the exposure of copepods to solid-phase contaminants it is not yet standardized, the employment of polystyrene inserts improved the procedures for T. fulvus too. So, the rapidity and the possibility to solve practical problems could be the main attractive features of this technique (Pane et al. 2005a) when applied to whole sediments. Recommendations and Perspectives  The methodology here developed being also applicable to long term and reproduction tests should be recommended because it provides relevant information in comparison with other frequently applied, standardized biotests with crustaceans (ISO 1999). The procedure has been shown to be easily applicable to selected marine organisms. ESS-Submission Editor: Prof. Dr. Henner Hollert (henner.hollert@bio5.rwth-aachen.de)  相似文献   
62.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   
63.
Concerns about sustainability of agroecosystems management options in developed and developing countries warrant improved understanding of N cycling. The Integrated Soil Fertility Management paradigm recognizes the possible interactive benefits of combining organic residues with mineral fertilizer inputs on agroecosystem functioning. However, these beneficial effects may be controlled by residue quality. This study examines the controls of inputs on N cycling across a gradient of (1) input, (2) residue quality, and (3) texture. We hypothesized that combining organic residue and mineral fertilizers would enhance potential N availability relative to either input alone. Residue and fertilizer inputs labeled with 15N (40–60 atom% 15N) were incubated with 200 g soil for 545 d in a microcosm experiment. Input treatments consisted of a no-input control, organic residues (3.65 g C kg−1 soil, equivalent to 4 Mg C ha−1), mineral N fertilizer (100 mg N kg−1 soil, equivalent to 120 kg N ha−1), and a combination of both with either the residue or fertilizer 15N-labeled. Zea mays stover inputs were added to four differently textured soils (sand, sandy loam, clay loam, and clay). Additionally, inputs of three residue quality classes (class I: Tithonia diversifolia, class II: Calliandra calothyrsus, class III: Z. mays stover) were applied to the clay soil. Available N and N2O emissions were measured as indicators for potential plant N uptake and N losses. Combining residue and fertilizer inputs resulted in a significant (P < 0.05) negative interactive effect on total extractable mineral N in all soils. This interactive effect decreased the mineral N pool, due to an immobilization of fertilizer-derived N and was observed up to 181 d, but generally became non-significant after 545 d. The initial reduction in mineral N might lead to less N2O losses. However, a texture effect on N2O fluxes was observed, with a significant interactive effect of combining residue and fertilizer inputs decreasing N2O losses in the coarse textured soils, but increasing N2O losses in the fine textured soils. The interactive effect on mineral N of combining fertilizer with residue changed from negative to positive with increasing residue quality. Our results indicate that combining fertilizer with medium quality residue has the potential to change N transformations through a negative interactive effect on mineral N. We conclude that capitalizing on interactions between fertilizer and organic residues allows for the development of sustainable nutrient management practices.  相似文献   
64.
Phosphorus (P) immobilization in soil involves geochemical (e.g., sorption, precipitation, and diffusion) and microbiological (microbial uptake) processes. Using a Brazilian Ultisol, relative contributions of both processes to the total immobilization of applied P over 14 days were investigated. The P immobilized by microbes as interpreted by microbial suppression (achieved by mercury sterilization) was 17, 50, 54, and 56% (of the total immobilized P) on days 3, 7, 10, and 14 after fertilization, respectively. In the short-term (1 to 3 days), microbes played less of a role than did the physical effect of shaking the soil, but became the major factor by days 7 to 14. Geochemical process that might be considered short-term ageing caused only 13–16% of the total immobilization in the same time period above. Calculations supported the interpretation that measurable diffusion occurred across water films on the soil particles.  相似文献   
65.
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems,deteriorating soil quality and changing climate.Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions.This article reviews the management aspects of soil C dynamics in light of recent advances,particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate.Globally,drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability,resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions,degraded soil quality,and increased atmospheric CO2 concentrations,leading to climate warming.Predicted climate warming is proposed to enhance SOC decomposition,which may further increase soil N availability,leading to higher soil CO2 efflux.However,a literature survey revealed that soil may also act as a potential C sink,if we could manage soil inorganic N pools and link microbial processes properly.Studies also indicated that the relative,rather than the absolute,availability of inorganic N pools might be of key importance under changing climate,as these N pools are variably affected by moisture-temperature interactions,and they have variable impacts on SOC turnover.Therefore,multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.  相似文献   
66.
The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.  相似文献   
67.
作物根系镉滞留作用及其生理生化机制   总被引:20,自引:1,他引:19  
王学华  戴力 《中国农业科学》2016,49(22):4323-4341
一定程度的镉胁迫严重影响了作物的生长发育和农产品的产量及品质。文中全面综述了重金属镉胁迫对作物和人类的危害,以及镉在作物体内的吸收、转运和积累特征及其相关的主要调控基因和功能。简要概述了作物抗镉耐镉机制,重点讨论了其中的根系镉滞留作用的生理和生化机制。重金属镉主要通过根部吸收进入植株,在根中,Cd~(2+)首先进入由细胞间隙、细胞壁微孔以及细胞壁到质膜之间的空隙等构成的"自由空间",然后通过主动或被动吸收跨膜进入胞质,再经共质体或质外体途径运输到木质部导管中。水稻等作物主要通过下列途径来适应镉胁迫:细胞壁的滞留作用、原生质体的螯合作用、液泡的区室化作用、逆境蛋白和脯氨酸的积累、抗氧化酶系统活性的提高、根系的滞留作用。根系镉滞留作用作为一种重要的抗耐镉毒害的方式,在调控作物对镉的吸收、转运和分配积累,阻碍镉进入植株地上部和原生质体,减少镉对作物自身生长发育及农产品产量和品质的影响等方面起着非常重要的作用。主要包括根茎间低转运量导致的镉滞留、根系细胞壁滞留和液泡滞留。(1)根茎间低转运量导致的镉滞留。该种滞留作用主要受到根系木质部的镉装载能力和镉长距离运输载体——植物螯合肽(PCs)含量的影响;它们主要受到质膜上跨膜离子转运蛋白HMA2和HMA4以及细胞中的PCs合成酶及其相应基因(如HMA2、HMA4、PCs1等)的调控。这些蛋白和基因对木质部的镉滞留起到负调控作用。(2)细胞壁滞留作用。根系细胞壁滞留发生在质外体部分(包括细胞壁和胞间层),主要与质外体的组成成分和结构相关,其中起关键作用的是果胶多糖,半纤维素也起到一定作用。根据果胶和半纤维素滞留镉的作用方式的不同,细胞壁滞留作用可分为物理滞留和化学滞留。物理滞留主要与细胞壁的孔隙度和厚度有关,此二者均受到细胞壁果胶含量和果胶甲酯酶PME活性的影响。而化学滞留则是由半纤维素和低酯化果胶上的带负电荷基团,如-COO-等,与Cd2+发生静电结合作用所致。它们会受到PME14和XCD1等基因的调控。(3)液泡滞留作用。液泡滞留作用与细胞质和液泡中的PCs以及液泡膜上的转运蛋白密切相关,其对镉的滞留能力大小受到液泡分隔容量大小(VSC)的限制。在液泡的镉滞留中,不同分子量大小的PCs起到了重要作用,它们参与了胞质中镉的螯合、胞质与液泡间镉的转移及最终液泡中镉的沉积。而液泡膜上的转运蛋白则负责将胞质溶液中的低分子量PC-Cd复合物通过主动运输转移到液泡内,使镉被隔离在活跃生理区之外。作物根系中,这三种重金属滞留机制先后联合作用,降低了镉向原生质体和地上部的转移,从而减轻了镉对地上部的毒害,降低了籽实等收获器官中的镉含量。然而,由于木质部中PC-Cd占总镉比例以及细胞壁电荷总量和液泡VSC大小的有限性,从而使得根系镉滞留作用的强度和效果都存在着一定的限度。  相似文献   
68.
Leaf litter decomposition and nutrient release patterns from five common multipurpose tree species—viz., Artocarpus heterophyllus, Mangifera indica, Areca catechu, Citrus sp., and Tamarindus indica, found in homegardens of Mizoram—were evaluated using a litter bag technique. The result of the study indicates a varying pattern of decomposition and nutrient release (N&P) among the species. Citrus sp. and T. indica were found to be the most labile species with comparatively much higher decay constant and faster nutrient release. Initial nitrogen concentration, lignin content, and lignin/N ratio of foliage litter showed significantly higher (p < .01) correlation with the decay coefficient and were found to be the important determinants in the decay process. The initial slow release and immobilization of N in A. heterophyllus and M. indica leaf litter reflect their potential as a source of nitrogen storage and effective mulching material. While litter from T. indica and Citrus sp. can provide the short-term nutrient need, foliage for the other three species may supply the long-term nutrient requirement for the understory crops in such agroforestry systems.  相似文献   
69.
70.
Over-fertilization has caused significant phosphorus(P) accumulation in Chinese greenhouse vegetable production(GVP) soils. This study, for the first time, quantified profile P accumulation directly from soil P measurements, as well as subsoil P immobilization, in three alkaline coarse-textured GVP soil profiles with 5(S5), 15(S15), and 30(S30) years of cultivation in Tongshan, Southeast China. For each profile, soil samples were collected at depths of 0–10(topsoil), 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Phosphorus accumulation was estimated from the difference in P contents between topsoil and parent material(60–100 cm subsoil). Phosphorus mobility was assessed from measurements of water-soluble P concentration(PSol). Finally, P sorption isotherms were produced using a batch sorption experiment and fitted using a modified Langmuir model. High total P contents of 1 980(S5), 3 190(S15), and 2 330(S30) mg kg~(-1) were measured in the topsoils versus lower total P content of approximately 600 mg kg~(-1) in the 80–100 cm subsoils. Likewise, topsoil PSol values were very high, varying from 6.4 to 17.0 mg L~(-1). The estimated annual P accumulations in the topsoils were 397(S5), 212(S15), and 78(S30) kg ha~(-1) year~(-1). Sorption isotherms demonstrated the dominance of P desorption in highly P-saturated topsoils, whereas the amount of adsorbed P increased in the 80–100 cm subsoils with slightly larger P adsorption capacity. The total P adsorption capacity of the 80–100 cm subsoils at a solution P concentration of0.5 mg L~(-1) was 15.7(S5), 8.7(S15), and 6.5(S30) kg ha~(-1), demonstrating that subsoils were unable to secure P concentrations in leaching water below 0.5 mg L~(-1) because of their insufficient P-binding capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号