首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The behaviour of P in a range of English arable soils was examined by plotting the change in resin P in the topsoil (ΔPres) at the end of a 3‐ to 5‐year period, against the P balance over the same period (fertilizer P applied minus offtake in crops, estimated from farmers’ reported yields and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops are valid averages, 20–60% of ΔPres was explained by the balance. Applying excess P fertilizer increased Pres, and reducing P fertilizer use decreased it; typically 3–4 kg P ha?1 was required for each mg L?1ΔPres (6–8 kg ha?1 for each mg L?1 of Olsen P). About half the P balance seems to be resin extractable and this differed little between soil groups, except in cases of very low P (index 0) in which the P buffering was stronger, and on very high P soils (index 4/5) when buffering was less. However, on calcareous soils and red soils, when fertilizer was applied in accord with offtake, Pres fell by up to 4 mg L?1 year?1 (2 mg L?1 yr?1 olsen P) and to prevent this an extra 3–10 kg P ha?1 year?1 fertilizer was required. But on most non‐calcareous soils, replacing offtake maintained Pres, with perhaps slight rises on soils of low clay content or greater organic matter content. In soils under arable rotations, the apparent recovery of P from fertilizer was often around 100%, falling to 85% on Chalk soils and 75% on medium–heavy soils on limestone or Lower Chalk. The fate of the ‘missing’ P needs clarification. The case for corrections to current P fertilizer recommendations in the UK on certain soil types is discussed.  相似文献   

2.
Organic inputs were used for 10 years on a French vineyard topsoil to improve structural stability and thus to protect against erosion. The three types of organic inputs (mulches) included: conifer compost, CC (100 m3 ha?1 every 3 years); conifer bark, CB (300 m3 ha?1 every 5 years); and cereal straw, S (10 t ha?1 every 2 years). The other two types of organic inputs were cover crops of clover (C) and fescue (F). The impacts of these organic inputs on soil organic carbon (SOC) content, wettability (capillary rise and X‐ray photoelectron spectroscopy (XPS)) and structural stability were studied. The SOC content was twice as large in the CC, C and F topsoils (SOC content of 2.56–3.24%) as in the reference (R) topsoil (SOC content of 1.39%). Both apparent contact angle (θ) and surface OH:C mass ratio indicated that the R and S topsoils were hydrophilic (θ of 27.4–33.4°, surface OH:C ratio of 3.20–4.41), whereas the CB, C and F topsoils were partially hydrophobic (θ of 69.1–79.8°, surface OH:C ratio of 1.36–2.86), and the CC topsoil had intermediate values (θ of 46.9°, surface OH:C ratio of 2.43–2.81). Moreover, the greater the θ value, the smaller the water sorptivity value and the greater the proportion of water‐stable aggregates, Agw. The increase in SOC content had beneficial effects on Agw, particularly for the partially hydrophobic C and F topsoils (Agw of 22.3–44.5%) against the hydrophilic R and S topsoils (Agw of 8.2–12.7%). Development of hydrophobicity, correlated with the decrease in the surface OH:C ratio and the increase in the C–O, C–N proportion on surface C, should be attributed to humified organic matter or/and to plant and microbial polysaccharides. As the XPS and aggregate stability data describe soil physical processes at small scales (nm to mm), we suggest an experimental and modelling framework for upscaling these results for practical improvement and management of vineyard soils.  相似文献   

3.
The uptake of N by ryegrass grown in pot culture on a range of soils differing widely in content of nonexchangeable NH4-N (topsoils: 117 to 354 mg kg?1 soil; subsoils: 117 to 270 mg kg?1 soil) was measured to indicate whether the amounts of NH4-N released from clay minerals were correlated with soil NH4-N. After two cuts soil analysis revealed that the amounts of mobilized nonexchangeable NH4-N were between 3.5 and 25.2 mg kg?1 from topsoils and between 0 and 8.2 mg kg?1 from subsoils. There was no correlation between soil nonexchangeable NH4-N content and release. The NH4-N extracted with 1 N HCl and the actual N uptake of the plants correlated highly significant. Assuming that the whole of the NH4-N released was taken up by ryegrass, NH4-N accounted for 11.2 to 75.0% of total N uptake from topsoils and 0 to 37.3% from subsoils. The release of nonexchangeable NH4-N was increased by the application of nitrate.  相似文献   

4.
‘Phosphate solubilizing bacteria' (PSBs) are able to release unavailable P from native and applied P sources into plant‐available soil pool through their solubilizing and acidifying effects. The effects of three indigenous and one exotic PSBs on P solubilization from different P sources, plant biomass production, and P‐uptake efficiency of maize (Zea mays L.) were examined in an incubation and greenhouse study. For incubation study, surface (0–15 cm) soil was collected from an arable field (Inceptisols) and amended with rock phosphate (RP), single superphosphate (SSP), poultry manure (PM), and RP+PM with and without PSBs. The amended soil was incubated in the control environment at 25 ± 2°C for a total of a 100‐d period to establish relative potential rate of P solubilization of added P sources. A complementary greenhouse experiment was conducted in pots by growing maize as a test crop. Growth characteristics, P‐uptake, and P‐utilization efficiency (PUE) were determined. Phosphate solubilizing bacteria generated a solubilization effect on different P sources by releasing more P into plant‐available soil pool, i.e., 14.0–18.3 µg g?1 in RP, 5.0–9.9 µg g?1 in SSP, 1.4–4.4 µg g?1 in PM, and 4.5–7.8 µg g?1 in RP+PM compared to their sole application without PSBs. The available P from inorganic SSP declined continuously from the mineral pool (after day 30) and at the end 40% of applied P was unaccounted for. However, P losses were reduced to 28 and 27% when PSBs (PSB1 and PSB3) were applied with superphosphate treatments. In the absence of PSBs, the recoveries of applied P (in soil) from RP, SSP, PM and RP+PM were 4, 25, 9, and 12%, respectively, those had been increased to 14, 30, 12 and 15% in the presence of PSBs. Similarly, the plant biomass in RP+PSBs treatments compared to the RP without PSBs increased between 12–30% in first sampling (30 DAG) and 13–30% in the second sampling (60 DAG). The P utilization efficiency (PUE) in plants supplemented with PSBs was 20–73% higher compared to those without PSBs. The detection of oxalic and gluconic acids in culture medium treated with PSBs (7.8–25.0 and 25–90 mg L?1, respectively) confirmed the production of organic acids by the indigenous bacterial isolates. This study indicate that low P recovery both in plant and soil can likely be improved by using indigenous PSBs and organic amendment poultry manure, which allowed a more efficient capture of P released due to P solubilization.  相似文献   

5.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

6.
ABSTRACT

Lucerne or alfalfa (Medicago sativa L.) is grown as a forage crop on many livestock farms. In calcareous soils in eastern Turkey, lucerne production requires phosphorus (P) additions as the soils are naturally P deficient. Phosphorus sorption isotherms were used to estimate P fertilizer needs for lucerne grown for two years in a 3-cut system on a calcareous P deficient Aridisol in eastern Anatolia, Erzurum province, Turkey. Annual P applications ranged from 0–1200 kg P ha?1. The Langmuir two-surface adsorption equation was used to derive the maximum P sorption capacity of unamended soil and to determine soil solution P, maximum buffer capacity (MBC), equilibrium buffer capacity (EBC), and P saturation at the optimum economic P rate (OEPR) for dry matter (DM) production. Soils were tested for Olson P at the onset of the study and after two years of P applications. In both years, tissue was analyzed for P content at flowering prior to first cutting. The OEPR (2-year average) was 754 kg P ha?1 yr?1 corresponding with a soil solution P concentration of 0.30 mg L?1, a DM yield of 8725 kg DM ha?1, and $528 ha?1 annual profit. The P content of leaves at flowering increased linearly with P application beyond 100 kg P ha?1 and was 3.2 g kg?1 P at the OEPR. The unfertilized soil had an EBC, MBC, P saturation, and Xmax of 3304 mL g?1, 3401 mL g?1, 6%, and 1086 mL g?1, respectively, whereas two years of fertilization to the OEPR decreased EBC and MBC to 358 mL g?1 and 540 mL g?1, and increased P saturation and Olsen P to 56% and 32 mg kg?1, respectively. These results suggest a P saturation >50% or Olsen P >30 mg kg?1 are needed to maintain an optimum soil solution concentration of 0.30 mg L?1 in this calcareous Aridisol. Similar studies with different soils and initial soil test P levels are needed to conclude if these critical soil test values can be applied across the region.  相似文献   

7.
We tested the hypothesis that concentrations of chemical constituents in stream water can be explained by the depth of water flow through soil. Therefore, we measured the concentrations of total organic carbon (TOC), NO3‐N, NH4‐N, dissolved organic nitrogen (DON), P, S, K, Ca, Mg, Na, Al and Mn in rainfall, throughfall, stemflow, litter leachate, mineral soil solution and stream water of three 8–13 ha catchments on steep slopes (1900–2200 m above sea level) of the south Ecuadorian Andes, from April 1998 to April 2003. Peak C (14–22 mg litre?1), N (0.6–0.9 mg litre?1), K (0.5–0.7 mg litre?1), Ca (0.6–1.0 mg litre?1), Mg (0.3–0.5 mg litre?1), Al (110–390 μg litre?1) and Mn (3.9–8.4 μg litre?1) concentrations in stream water were associated with lateral flow (fast near‐surface flow in saturated topsoil) while the greatest P (0.1–0.3 mg litre?1), S (0.3–0.7 mg litre?1) and Na (3.0–6.0 mg litre?1) concentrations occurred during low baseflow conditions. All elements had greater concentrations in the organic layer than in the mineral soil, but only C, N, K, Ca, Mg, Al and Mn were flushed out during lateral‐flow conditions. Phosphorus, S and Na, in contrast, were mainly released by weathering and (re‐)oxidation of sulphides in the subsoil. Baseflow accounted for 32% to 61% of P export, while > 50% of S was exported during intermediate flow conditions (i.e. lateral flow at the depth of several tens of cm in the mineral soil). Near‐surface water flow through C‐ and nutrient‐rich topsoil during rainstorms was the major export pathway for C, N, Al and Mn (contributing > 50% to the total export of these elements). Near‐surface flow also accounted for one‐third of total base metal export. Our results demonstrate that near‐surface flow related to storm events markedly affects the cycling of many nutrients in steep tropical montane forests.  相似文献   

8.
External and internal phosphorus (P) requirements of hybrid maize (FHY-396) and indigenous variety (EV-7004) were compared on a Typic Calciargid soil. A sorption isotherm was constructed by equilibrating 2.5 g soil with 25 mL of a 0.01 M calcium chloride (CaCl2) solution containing 2, 3, 6, 12, 25, 50, and 100 mg P L–1. Sorption data were fitted to a modified Freundlich equation [x/m = Kf(EPC)1/n] to compute P rates (0, 30, 60, and 120 mg kg–1 soil) against solution levels (0, 0.09, 0.26, and 0.76 mg P L–1) for a pot study. Applied P significantly increased shoot dry matter, P concentration, and P uptake in both the genotypes. For optimum shoot growth, internal P requirement of hybrid (2.51 mg g–1) was 5% more than variety (2.39 mg g–1). However, external P requirement of hybrid (0.50 mg L–1) was remarkably more than variety (0.19 mg L–1). This strongly advocated greater P rates for the high-yielding hybrid than for the variety.  相似文献   

9.
Establishment of pine (Pinus spp.) plantations on grasslands could increase carbon (C) sequestration to counteract increased atmospheric carbon dioxide concentrations. In the grasslands of the southern Brazilian highland (Campos), large areas have been converted to Pinus plantations over the last 30 years. In order to assess the impact of this land‐use change on the amount and composition of soil organic matter (SOM), we investigated a grassland pasture site (G), and both an 8‐year‐old (P8) and a 30‐year‐old (P30) plantation with Pinus taeda. Soil samples down to 45 cm were analysed for texture, pH, soil organic carbon (SOC) and total nitrogen (Ntot) concentrations. Chemical composition of SOM was determined by using cross‐polarization magic angle spinning (CPMAS) 13C NMR spectroscopy. We analysed for stable C isotope (δ13C) and assessed the lignin composition by CuO oxidation. Additionally, contents of pyrogenic organic material (PyOM) were determined because the Campos is regularly burnt. Both pine plantations revealed relatively small SOC concentrations in the mineral soil of 72.6 mg g?1 (P8) and 56.8 mg g?1 (P30) and Ntot concentrations of 4.0 mg g?1 (P8) and 2.9 mg g?1 (P30) for the A horizon, while grassland showed significantly (P < 0.01) larger contents of 100.2 mg g?1 for SOC and 5.9 mg g?1 for Ntot. Accumulation of litter layers suggests decreased input of organic material into the mineral soil under pine, which was confirmed by the δ13C values and lignin composition. Smaller contents of vanillyl‐ (V), syringyl‐ (S), and cinnamyl (C)‐phenols, smaller ratios of S/V and C/V, and smaller ratios of acidic to aldehydic forms of V and S phenols indicated a high degree of decomposition of residual grass‐derived SOM in the upper part of the mineral soil (0–10 cm) under pine plantations. This was confirmed by CPMAS 13C NMR spectroscopy, showing an increasing Alkyl C/O‐Alkyl C ratio at the same depth. No significant changes in the contents of PyOM could be detected, but all sites tended to show the greatest concentrations at deeper soil depths > 15 cm, indicating a vertical relocation of PyOM. The results suggest that decomposition of residual SOM originating from grassland species contributes to the decrease of SOC and Ntot and to an acidification in the topsoil under pine plantations. We also suggest that slow litter decomposition and incorporation and the absence of fires at the plantations are additional reasons for the reduced amount of SOM. Depletion of SOM and the acidification of the topsoil may reduce the availability and supply of nutrients and diminish the C sequestration potential of the mineral soil.  相似文献   

10.
Abstract

Accurate measurement and characterization of phosphate rock dissolution are important for a better understanding of phosphorus (P) availability in soils. An incubation study was carried out on two New Zealand topsoils (0–15 cm; high P buffering capacity Craigieburn and low P buffering capacity Templeton) amended with North Carolina phosphate rock (NCPR) and water‐soluble phosphate (WSP) at 218 mg P kg?1 (equivalent to 60 kg P ha?1). Isotopic exchange kinetics was carried out after 12 h and 28 days of incubation to characterize P availability. This study showed that sensitivity of capacity factors (r1/R, n) to explain changes in E1min values was affected by the P buffering capacity of the soils. The recovery of applied P in the E pool (RecinE%) with extended incubation time was similar from the NCPR and WSP treatments (3.1–3.3%) in the Craigieburn soil compared with the Templeton soil in which RecinE% values were greater in WSP (9%) than NCPR (1.3%) treatment. The higher values of P derived from the applied P fertilizers in the E pool (PdffinE%>80%) suggested that the NCPR application in both soils would be efficient for increasing P availability to plants.  相似文献   

11.
Composition and Speciation of Soil Solution collected in a Heavy Metal polluted calcareous Soil Close to a brass foundry, which had emitted heavy metal containing dusts for over 80 years, soil water was collected in the topsoil (18 cm) and in the subsoil (40 cm) of a severely polluted Calcic Fluvisol by means of polyethylen suction cups over a period of 2 years. The total metal content of the topsoil (extracted with 2M HNO3 at 100 °C for 2 hours) was 38 nmol g?1, 24 μmol g?1, and 25 μmol g?1 for Cd, Cu, and Zn, respectively. The mean heavy metal concentrations of the soil solution were 0.5 mol L?1, 300 nmol L?1, and 200 nmol L?1 in the topsoil and 0.6 nmol L?1, 90 nmol L?1, and 30 nmol L?1 in the subsoil for Cd, Cu, and Zn, respectively. Solubility calculations showed that the soil solutions were undersaturated with respect to heavy metal carbonates as well as to hydroxides. It seems that the heavy metal concentration is determined by sorption processes rather than by precipitation. The composition of the soil solution has been shown to be governed by the presence, of calcite, by the soil temperature and by the partial pressure of CO2 in the soil air. The pCO2 in the soil air (in both depths) has been estimated at 2 mbar during the winter term and at 20 mbar during the summer term. A corresponding increase of the concentration of macroelements (Ca, Mg, Na) as well as of total dissolved carbonate and of dissolved organic matter (DOC) has been measured in the summer half year. No significant seasonal variations of the heavy metal concentrations were detected and no correlations with concentrations of other components could be found.  相似文献   

12.
Fertilizer phosphorus (P) is generally added to agricultural soils to meet the needs of crop production. In this study, the crop yield and soil Olsen P were measured every year (5–18 years) at 16 winter wheat (Triticum aestivum L.) –maize (Zea mays L.) crop rotation sites in cinnamon soil (Luvisols in FAO system). The mean agronomic critical value of Olsen P for maize was 14.2 mg kg?1 and for winter wheat was 14.4 mg kg?1 when using the Liner-plateau and Mitscherlich models. The change in soil Olsen P was positively linearly correlated with the P budget (P < 0.01), and an increase of 4.70 mg kg?1 in soil Olsen P for each 100 kg ha?1 of P budget in the 0–20 cm soil layer. A model of P fertilizer recommendation rate that integrated values of the change in soil Olsen P in response to P budget and the agronomic critical value of Olsen P was used, in order to adjust current levels of soil Olsen P to the agronomic critical value at the experimental sites over the next 5 years, P fertilizer application rate should be in the range of 0–87.5 kg P ha?1.  相似文献   

13.
Molybdate-reactive phosphorus (MRP) in soil-free 0.5 M sodium bicarbonate (NaHCO3) extracts of 20 soils held at 22 °C increased 0–25% (median 11%) after 24 h and by 5–120% (median 43%) after 72 h. Addition of 2.5 mL L?1 of chloroform (1) or 0.25–1 g L?1 of thymol (2), phenyl mercury acetate (3), sodium cyanide (4), or sodium azide (5) showed that only (2)–(5) at 1 g L?1 stabilized the MRP for 72 h. Five of the soils were re-extracted with 0.5 M NaHCO3 containing 1 g L?1 of (2)–(5): all stabilized MRP for 72 h, and (2) increased MRP for three soils (P < 0.05). For 92 additional soils (0.5–200 mg MRP kg?1) extracted with 0.5 M NaHCO3 ± 1 g of sodium azide L?1, the azide had a negligible effect on MRP extraction, and in its presence, extracted MRP was unchanged after 72 h at 22 °C. We recommend this extractant for wider evaluation.  相似文献   

14.
To clarify whether a particular group of soils of Archangelsk region (European N Russia) with humus‐rich topsoils exceeding the plowing zone supports an anthropogenic formation, four exemplary profiles were investigated. The investigation sites are characterized by distinct elevated surfaces, and the soils show thick toplayers of up to 60 cm with enrichment of soil organic matter and artifacts like brick, charcoal, and peat fragments, all indicating an anthropogenic origin. Increased phytolith amounts and high P contents of up to 800 mg kg–1 citric acid–soluble P and up to 1,400 mg kg–1 total P in the top horizons support an anthropogenic influence. These properties are very similar to the Plagganthrepts of NW Europe. The same is true regarding the main management aims: increasing soil fertility and overcoming the need of bedding materials. Having the required depths of the anthropogenic topsoil, the properties of the soils of the Archangelsk region allow a classification as Agrozems (Russian classification), Plaggenesche (German classification), and Plagganthrepts (US taxonomy). Since the high base saturation of the topsoil excludes a designation as plaggic horizon, the topsoil has to be considered as terric horizon, which leads to a classification as Terric Anthrosol according to WRB.  相似文献   

15.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

16.
Overall, arable soils in Sweden are currently generally close to phosphorus (P) balance, but excessive P accumulation has occurred on animal fur farms, i.e., those rearing mink (Mustela vison) and foxes (Alopex lagopus and Vulpes vulpes). Manure P from these farms has sometimes regarded as sparingly soluble. Laboratory lysimeter topsoil trials with simulated rain demonstrated that potential leaching of P in dissolved reactive form (DRP) can be very high, even for heavy clay (50%–65%) soils. The Swedish/Norwegian soil test P‐AL (soil P extracted with acid NH4 lactate, AL) proved useful as a potential indicator of DRP leaching risk (regression coefficient [R2] = 0.89) from fur farms. The upper 5‐cm soil layer, with 190% higher (median) soil P status than the 5–20 cm layer, was the major source of potential DRP leaching through soil columns at the site, despite having been under grass or green fallow for the past 8 y. In percolate from topsoil lysimeters, DRP concentration increased by 0.29 mg L–1 after the long‐term manure application but only by 0.14 mg L–1 after the single slurry application when compared to no addition of slurry. Therefore, the build‐up to a high soil P status due to the long‐term application of mink manure was more important than a single application of pig slurry at a rate corresponding to 22 kg P ha–1 with respect to soil leachate DRP losses in this lysimeter study. The study stresses the importance of precision farming, in which the amount of slurry‐P applied is based on testing the already existing soil P content.  相似文献   

17.
It is well known that calcium (Ca2+) plays an important role in binding organic matter to clay. However, most previous studies were conducted with either topsoil or pure aluminosilicates. Less is known about the effect of Ca2+ on binding of organic matter to clay-rich subsoils, which have lower organic-matter contents than topsoils, and their clays are more strongly weathered than pure aluminosilicates. Two experiments were conducted with a Vertisol subsoil (69% clay): a laboratory incubation and a batch sorption. The mineral substrate in the incubation experiment was pure sand alone or sand amended with 300 g clay kg?1. Powdered calcium sulfate (CaSO4) at rates of 0, 5, 10, and 15 g Ca kg?1 and mature wheat residue at a rate of 20 g kg?1 were added to this mineral substrate and the water content was adjusted to 70% of water-holding capacity. Carbon dioxide release was measured for 28 days. Cumulative respiration per g soil organic carbon (C) (SOC from clay and residues) was increased by clay addition. Increasing Ca2+ addition rate decreased cumulative respiration in the sand with clay but had no effect on respiration in the pure sand. Clay and Ca2+ addition had no significant effect on microbial biomass carbon (MBC) per g SOC but clay addition reduced the concentration of potassium sulfate (K2SO4)–extractable C per g SOC. For the batch sorption experiment, the subsoil was mixed with 0 to 15 g Ca kg?1 and water-extractable organic C (WEOC) derived from mature wheat straw was added at 0, 1485, 3267, and 5099 mg WEOC kg?1. Increasing Ca2+ addition rate increased sorption of WEOC, particularly at the greatest concentration of WEOC added, and decreased desorption. This study confirmed the importance of Ca2+ in binding organic matter to clay and suggests that Ca2+ addition to clay-rich subsoils could be used to increase their organic C sequestration.  相似文献   

18.
The effects of varying fertilizer application rates [100–15–100 or 300–46–300 mg L‐1 of nitrogen (N)‐phosphorus (P)‐potassium (K)] and pinching dates on nutrient uptake patterns of poinsettias were studied. During the first seven weeks after potting, varying the N‐P‐K fertilization rate from 100–15–100 to 300–46–300 mg L‐1 N‐P‐K had no effect on plant height, dry weight, nutrient concentration, or nutrient content of poinsettias. The uptake ratios for NO3‐N, K, calcium (Ca), and magnesium (Mg) all were <40% of the amount that was available at the 100 mg L"1 N and K fertilization rate, indicating that poinsettias require lower levels of NO3‐N, K, Ca, and Mg than what was available from the 100–15–100 mg L"1 N‐P‐K fertilization rate. The higher uptake ratios of >60% and >70%, respectively, for NH4‐N and P at the 100 mg L"1 N and K fertilization rate indicated the plants utilized a higher percentage of the available NH4‐N and P, indicating that an application rate >18 mg L‐1 NH4‐N and >15 mg L‐1 P would be required by poinsettias from the week before the plants were pinched through three weeks after pinching. The 300–46–300 mg L‐1 N‐P‐K fertilization rate provided excessive nutrients that were not utilized by the plants during the early stages of plant growth.  相似文献   

19.
Different tillage systems may affect P dynamics in soils due to differently distributed plant residues, different aggregate dynamics and erosion losses, but quantitative data are scarce. Objectives were to investigate the effect of tillage on the availability of P in a long‐term field trial on loess soils (Phaeozems and Luvisols) initiated from 1990 to 1997. Four research sites in E and S Germany were established with a crop rotation consisting of two times winter wheat followed by sugar beet. The treatments were no‐till (NT) without cultivation, except for seedbed preparation to a depth of 5 cm before sugar beet was sown and conventional tillage (CT) with mouldboard plowing down to 25–30 cm. Soil P was divided into different pools by a sequential extraction method, and total P (Pt) in the single P fractions was extracted by digesting the extracts of the fractionation to calculate the contents of organic P. The Pt content (792 mg [kg soil]–1) in the topsoil (0–5 cm) of NT was 15% higher compared to CT, while with increasing depth the Pt content decreased more under NT than under CT. This was also true for the other P fractions except for residual P. The higher P contents in the topsoil of NT presumably resulted from the shallower incorporation of harvest residues and fertilizer P compared to CT, whereas estimated soil losses and thus also P losses due to water erosion were only small for both treatments. Contents of oxalate‐extractable Fe and organic C were positively related to the labile fractions of inorganic P, while there was a high correlation of the stable fractions with the clay contents and pH. Multiple regression analyses explained 50% of the variability of these P fractions. Overall, only small differences in the P fractions and availability were observed between the long‐term tillage treatments.  相似文献   

20.
This study investigated phosphorus (P) dynamics and kinetics in calcareous soil under inorganic, organic, and integrated (inorganic+organic) fertilizer systems during two growing seasons of maize in two soil depths (0–0.15 and 0.15–0.30 m). A field experiment was conducted with 150, 300, and 400 kg ha?1 triple superphosphate (TSP), 7.5 and 15.0 ton ha?1 (on dry matter basis) farmyard manure (FYM), and integrated systems. In order to analyze Olsen P, soil samples were collected in 30-day-intervals after planting. The results showed that at the end of the two growing seasons of maize, the lowest magnitudes of Olsen P0–0.15 m were 6.0, 6.8, 7.4, and 7.6 mg kg?1 for the control, 7.5 FYM, 15 FYM, and 150 TSP, respectively. The highest magnitudes of Olsen P0–0.15 m were 12.4, 11.5, 11.4, and 11.1 mg kg?1 for 300 TSP+15 FYM, 400 TSP+7.5 FYM, 400 TSP+15 FYM, and 300 TSP+7.5 FYM, respectively. The same trends were observed for Olsen P0.15–0.30 m. Heterogeneous diffusion model demonstrated that Elovich equation could best describe the experimental data (mean; R2 = 0.98, SE = 0.29). The highest P supply rates (PSR) were 4.73, 3.91, and 3.86 mg kg?1day?1 (days after application) for 400 TSP, 400 TSP+15 FYM, and 300 TSP, respectively. The models of P supply capacity of soil could estimate P supply of soil under different fertilizer systems (R2 = 0.84–0.95). The present study improved the understanding of the capacity and rate of P supply by considering P uptake by grain maize. Fertilizer recommendations depend on the accessibility of fertilizer types suggested to help choose the best fertilizer systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号