首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC). SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-2100 were simulated using stochastic modelling. Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration. Therefore, there was a counteract effect on SOC dynamics between climate warming and elevated CO2 . For different soil erosion extents, warming 1 C and elevated atmospheric CO2 resulted in SOC increase at least 15%, while warming 5 C and elevated CO2 resulted in SOC decrease more than 29%. SOC predictions with uncertainty assessment were conducted for different scenarios of soil erosion, climate change, and elevated CO2 . Statistically, SOC decreased linearly with the probability. SOC also decreased with time and the degree of soil erosion. For example, in 2100 with a probability of 50%, SOC was 1 617, 1 167, and 892 g m 2 , respectively, for no, minimum, and maximum soil erosion. Under climate warming 5 C and elevated CO2 , the soil carbon pools became a carbon source to the atmosphere (P > 95%). The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2 .  相似文献   

2.
Alpine grasslands with a high soil organic carbon(SOC)storage on the Tibetan Plateau are experiencing rapid climate warming and anthropogenic nitrogen(N)deposition;this is expected to substantially increase the soil N availability,which may impact carbon(C)cycling.However,little is known regarding how N enrichment influences soil microbial communities and functions relative to C cycling in this region.We conducted a 4-year field experiment on an alpine grassland to evaluate the effects of four different rates of N addition(0,25,50,and 100 kg N ha^-1 year^-1)on the abundance and community structure(phospholipid fatty acids,PLFAs)of microbes,enzyme activities,and community level physiological profiles(CLPP)in soil.We found that N addition increased the microbial biomass C(MBC)and N(MBN),along with an increased abundance of bacterial PLFAs,especially Gram-negative bacterial PLFAs,with a decreasing ratio of Gram-positive to Gram-negative bacteria.The N addition also stimulated the growth of fungi,especially arbuscular mycorrhizal fungi,reducing the ratio of fungi to bacteria.Microbial functional diversity and activity of enzymes involved in C cycling(β-1,4-glucosidase and phenol oxidase)and N cycling(β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase)increased after N addition,resulting in a loss of SOC.A meta-analysis showed that the soil C/N ratio was a key factor in the response of oxidase activity to N amendment,suggesting that the responses of soil microbial functions,which are linked to C turnover relative to N input,primarily depended upon the soil C/N ratio.Overall,our findings highlight that N addition has a positive influence on microbial communities and their associated functions,which may reduce soil C storage in alpine grasslands under global change scenarios.  相似文献   

3.
The responses of soil microbes to global warming and nitrogen enrichment can profoundly affect terrestrial ecosystem functions and the ecosystem feedbacks to climate change. However, the interactive effect of warming and nitrogen enrichment on soil microbial community is unclear. In this study, individual and interactive effects of experimental warming and nitrogen addition on the soil microbial community were investigated in a long-term field experiment in a temperate steppe of northern China. The field experiment started in 2006 and soils were sampled in 2010 and analyzed for phospholipid fatty acids to characterize the soil microbial communities. Some soil chemical properties were also determined. Five-year experimental warming significantly increased soil total microbial biomass and the proportion of Gram-negative bacteria in the soils. Long-term nitrogen addition decreased soil microbial biomass at the 0-10 cm soil depth and the relative abundance of arbuscular mycorrhizal fungi in the soils. Little interactive effect on soil microbes was detected when experimental warming and nitrogen addition were combined. Soil microbial biomass positively correlated with soil total C and N, but basically did not relate to the soil C/N ratio and pH. Our results suggest that future global warming or nitrogen enrichment may significantly change the soil microbial communities in the temperate steppes in northern China.  相似文献   

4.
Labile soil organic carbon(SOC) pools, estimated through chemical fractionation techniques, are considered sensitive indicators of management-induced changes in quality and composition of soil organic matter. Although the impacts of organic manure and crop residue applications on C sequestration in rice-wheat system are fairly well documented, their influence on labile SOC pools is relatively less known. Impacts of organic manure, rice straw, and inorganic fertilizer nitrogen(N) applications on soil total organic carbon(TOC)and SOC pools including water-extractable organic C(WEOC), hot water-soluble organic C(HWOC), potassium permanganateoxidizable organic C(KMnO 4-C), microbial biomass C(MBC), mineralizable organic C(Cmin), and the oxidizable fractions of decreasing oxidizability(easily-oxidizable, oxidizable, and weakly-oxidizable) were investigated in an 11-year field experiment under rice-wheat system. The field experiment included treatments of different combinations of farmyard manure, rice straw, and fertilizer N application rates, with C inputs estimated to be in the range from 23 to 127 Mg ha-1. After 11 years of experiment, WEOC,HWOC, and KMnO 4-C were 0.32%–0.50%, 2.2%–3.3%, and 15.0%–20.6% of TOC, respectively. The easily-oxidizable, oxidizable,and weakly-oxidizable fractions were 43%–57%, 22%–27%, and 10%–19% of TOC, respectively. The applications of farmyard manure and rice straw improved WEOC, HWOC, KMnO 4-C, easily-oxidizable fraction, Cmin, and MBC, though the rates of change varied considerably from-14% to 145% and-11% to 83% of TOC, respectively. At the C input levels between 29 and 78 Mg C ha-1during the 11-year period, the greatest increase was observed in WEOC and the minimum in KMnO 4-C. Water-extractable organic C exhibited a relatively greater sensitivity to management than TOC, suggesting that it may be used as a sensitive indicator of management-induced changes in soil organic matter under rice-wheat system. All the other labile SOC pools exhibited almost the same sensitivity to management as TOC. Most of the SOC pools investigated were positively correlated to each other though their amounts differed considerably. Long-term applications of farmyard manure and rice straw resulted in build-up of not only the labile but also the recalcitrant pool of SOC, emphasizing the need for continued application of organic amendments for permanence of the accrued C under the experimental conditions.  相似文献   

5.
Based on data from 10-year field experiments on residue/fertilizer management in the dryland farming region of northern China, Century model was used to simulate the site-specific ecosystem dynamics through adjustment of the model's parameters, and the applicability of the model to propose soil organic carbon (SOC) management temporally and spatially, in cases such as of tillage/residue/fertilization management options, was identified v/a scenario analysis.Results between simulations and actual measurements were in close agreement when appropriate applications of stover,manure and inorganic fertilizer were combined. Simulations of extreme C/N ratios with added organic materials tended to underestimate the measured effects. Scenarios of changed tillage methods, residue practices and fertilization options showed potential to maintain and enhance SOC in the long run, while increasing inorganic N slowed down the SOC turnover rate but did not create a net C sink without any organic C input. The Century model simulation showed a good relationship between annual C inputs to the soil and the rate of C sequestration in the top 20 cm layer and provided quantitative estimations of changes in parameters crucial for sustainable land use and management. Conservation tillage practices for sustainable land use should be integrated with residue management and appreciable organic and inorganic fertilizer application, adapted according to the local residue resource, soil fertility and production conditions. At least 50% residue return into the soil was needed annually for maintenance of SOC balance, and manure amendment was important for enhancement of SOC in small crop-livestock systems in which crop residue land application was limited.  相似文献   

6.
Soil has been identified as a possible carbon(C) sink for sequestering atmospheric carbon dioxide(CO_2).However,soil organic carbon(SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate,soil and agricultural management practices,which hinders our understanding of the underlying mechanisms.The objectives of this study were to use the Agricultural Production Systems sIMulator(APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites,Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Uriimqi with single cropping systems,located in northern China.Firstly,the model was calibrated using information from the sites and literature,and its performance to predict crop growth and SOC dynamics was examined.The calibrated model was then used to assess the impacts of different management practices,including fertilizer application,irrigation,and residue retention,on C dynamics in the top 30 cm of the soil by scenario modelling.Results indicate a significant SOC sequestration potential through improved management practices of nitrogen(N) fertilizer application,stubble retention,and irrigation.Optimal N fertilization(N_(opt)) and 100%stubble retention(R100) increased SOC by about 11.2%,208.29%,and 283.67%under irrigation at Gongzhuling,Zhengzhou,and Xuzhou,respectively.Soil organic carbon decreased rapidly at(U|¨)rumqi under irrigation,which was due to the enhanced decomposition by increased soil moisture.Under rainfed condition,SOC remained at a higher level.The combination of N_(opt) and R100 increased SOC by about 0.46%under rainfed condition at Uriimqi.Generally,agricultural soils with double cropping systems(Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems(Gongzhuling and(U|¨)r(u|¨)mqi).  相似文献   

7.
Humidity not only affects soil microbial respiration (SMR) directly, but, indirectly by regulating the availability of soil water and nutrients. However, the patterns of direct and indirect effects of humidity on SMR over large precipitation gradients remain unclear, limiting our understanding of the effects of precipitation changes on soil C cycle. Here, we investigated the relationships among humidity, soil nutrients, and SMR by identifying stoichiometric imbalances, microbial elemental homeostasis, and microbial C use efficiency along a precipitation gradient at a continental scale. The relationship between SMR and humidity index (HI) corresponded to a Richard’s curve with an inflection point threshold value of approximately 0.7. Soil microbial respiration increased with increasing humidity in drier areas (HI < 0.7), but tended to balance above this threshold. Increasing humidity exacerbated C:P and N:P imbalances across the selected gradient. Severe N and P limitations in soil microbial communities were observed in drier areas, while soil microbes suffered from aggravated P limitation as the humidity increased in wetter areas (HI > 0.7). Soil microbial communities regulated their enzyme production to maintain a strong stoichiometric homeostasis in drier areas; enzyme production, microbial biomass, and threshold elemental ratios were non-homeostatic under P limitation in wetter areas, which further contributed to the increase in SMR. Our results identified a moisture constraint on SMR in drier areas and highlighted the importance of nutrient (especially for P) limitations induced by humidity in regulating SMR in wetter areas. Understanding the modulation of SMR via soil enzyme activity may improve the prediction of soil C budget under future global climate change.  相似文献   

8.
Climate warming may promote soil organic carbon(SOC) decomposition and alter SOC stocks in terrestrial ecosystems, which would in turn affect climate warming. We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigê on the eastern Tibetan Plateau, China. Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season, promoted above-and be...  相似文献   

9.
The dynamics of soil inorganic nitrogen (NH4^+ -N and NO3^- -N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g^-1, respectively. The average contents of soil NH4^+ -N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO3^ -N and total inorganic N contents decreased in the order of SUF ≥ SF ≥ DUF, the Nmic content was in the order of SF = SUF 〉 DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF 〉 SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH4^+ -N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of gazing decreased the Cmic:Nmic ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.  相似文献   

10.
Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P < 0.01) increased in the August 2006 samples that received the elevated CO2 treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P < 0.04) decreased by elevated CO2 treatments in the August 2006 and June 2007 (P < 0.09) samples. β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils.  相似文献   

11.
Switchgrass (Panicum virgatum L.) has been proposed as a sustainable bioenergy crop because of its high yield potential, adaptation to marginal sites, and tolerance to water and nutrient limitations. A better understanding of the potential effects of biomass energy crop production practices on soil biological properties and organic matter dynamics is critical to its production. Our objective was to evaluate changes in C pools under a warm-season perennial switchgrass in different soils compared to typically-grown crops collected at College Station, Dallas, and Stephenville, TX in February 2001. Sampling depths were 0-5, 5-15, and 15-30 cm. Switchgrass increased soil organic C (SOC), soil microbial biomass C (SMBC), mineralizable C, and particulate organic matter C (POM-C) compared to conventional cropping systems. Soil C concentrations were in the order: long-term coastal bermudagrass [Cynodon dactylon (L.) Pers.]> switchgrass or kleingrass (Panicum coloratum L.) planted in 1992> switchgrass 1997> conventional cropping systems. Soil C concentrations tended to increase with increasing clay content. Greater microbial biomass C followed the order of Dallas> College Station> Stephenville, and ranged from approximately 180 mg C kg-1 soil at Stephenville to 1 900 mg C kg-1 soil at Dallas. Particulate organic C was more sensitive than other fractions to management, increasing as much as 6-fold under long-term coastal bermudagrass compared to conventional cropping systems. Our study indicated that conversion of conventional cropping systems into switchgrass production can sequestrate more SOC and improve soil biological properties in the southern USA.  相似文献   

12.
Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change.  相似文献   

13.
Addition of clay-rich subsoil to sandy soil results in heterogeneous soil with clay peds(2-mm) or finely ground( 2 mm) clay soil(FG), which may affect the nutrient availability. The aim of this study was to assess the effect of clay soil particle size(FG or peds)and properties on nutrient availability and organic C binding in sandy soil after addition of residues with low(young kikuyu grass,KG) or high(faba bean, FB) C/N ratio. Two clay soils with high and low smectite percentage, clay and exchangeable Fe and Al were added to a sandy soil at a rate of 20%(weight/weight) either as FG or peds. Over 45 d, available N and P as well as microbial biomass N and P concentrations and cumulative respiration were greater in soils with residues of KG than FB. For soils with KG residues,clay addition increased available N and initial microbial biomass C and N concentrations, but decreased cumulative respiration and P availability compared to sandy soil without clay. Differences in measured parameters between clay type and size were inconsistent and varied with time except the increase in total organic C in the 53 μm fraction during the experiment, which was greater for soils with FG than with peds. We concluded that the high exchangeable Fe and Al concentrations in the low-smectite clay soil can compensate a lower clay concentration and proportion of smectite with respect to binding of organic matter and nutrients.  相似文献   

14.
Improving management of soil organic carbon (SOC) has been considered as a substantial mitigation strategy to climate change. Management such as stubble retention (SR), conservation tillage (ZT), and fertilization are recommended for both promoting production and accumulating SOC. However, whether such management practices can cause net increase in SOC or just a slow-down of SOC decline largely depends on the current status of SOC for a given region. This paper synthesized the available SOC data in the croplands of China, and analysed the change of SOC in the top 20 cm soil as a result of management change. The results showed that, on average, SOC increased by 18.3% through SR, by 9.1% through ZT, and by 12.4%, 36.9% and 41.5% through application of inorganic (IF), organic (OF) and combined inorganic and organic fertilizers (IOF), respectively, compared to those under stubble removal, conventional tillage and no fertilization. Under SR, ZT, IF, OF and IOF, SOC increased by 16.0%, 10.2%, 8.2%, 32.2% and 41.3%, respectively, at the end of the trials compared with the initial values at the start of the trials. Our analysis also showed that in Northeast and Northwest China, SOC in agricultural soils is still decreasing due to cultivation. In North and South China, however, SOC appears to have reached a new equilibrium of low SOC state after a long cultivation history, and soils have greater potential to sequester C. Our analysis highlights the need of taking account of the baseline status to assess the net soil C balance over time and space.  相似文献   

15.
Soil microorganisms are major drivers of soil carbon(C) cycling;however,the response of these microorganisms to climate change remains unclear.In the present study,we investigated how 18 months of multifactor climate treatments(warmed air temperature by 3℃ and decreased or increased precipitation manipulation by 30%) affected soil microbial biomass C and nitrogen(N),community substrate utilization patterns,and community composition.Decreased and increased precipitation significantly reduced microbial biomass C by 13.5% and 24.9% and microbial biomass N by 22.9% and 17.6% in unwarmed plots,respectively(P0.01).Warming enhanced community substrate utilization by 89.8%,20.4%,and 141.4% in the natural,decreased,and increased precipitation plots,respectively.Particularly,warming significantly enhanced the utilization of amine and carboxylic acid substrates among all precipitation manipulation plots.Compared with the natural air temperature with natural precipitation treatment,other treatments affected fungal community richness by -0.9% to 33.6% and reduced the relative abundance of the dominant bacterial and fungal groups by 0.5% to 6.8% and 4.3% to 10.7%,respectively.The warming and/or precipitation manipulation treatments significantly altered Zygomycota abundance(P0.05).Our results indicate that climate change drivers and their interactions may cause changes in soil microbial biomass C and N,community substrate utilization patterns,and community composition,particularly for the fungal community,and shifts in the microorganism community may further shape the ecosystems function.  相似文献   

16.
Management intensity critically influences the productivity and sustainability of pasture systems through modifying soil microbes, and soil carbon(C) and nutrient dynamics; however, such effects are not well understood yet in the southeastern USA. We examined the effects of grazing intensity and grass planting system on soil C and nitrogen(N) dynamics, and microbial biomass and respiration in a long-term field experiment in Goldsboro, North Carolina, USA. A split-plot experiment was initiated in 2003 on a highly sandy soil under treatments of two grass planting systems(ryegrass rotation with sorghum-sudangrass hybrid and ryegrass seeding into a perennial bermudagrass stand) at low and high grazing densities. After 4 years of continuous treatments, soil total C and N contents across the 0–30 cm soil profile were 24.7% and 17.5% higher at the high than at the low grazing intensity, likely through promoting plant productivity and C allocation belowground as well as fecal and urinary inputs. Grass planting system effects were significant only at the low grazing intensity, with soil C, N, and microbial biomass and respiration in the top 10 cm being higher under the ryegrass/bermudagrass than under the ryegrass/sorghum-sudangrass hybrid planting systems. These results suggest that effective management could mitigate potential adverse effects of high grazing intensities on soil properties and facilitate sustainability of pastureland.  相似文献   

17.
Studies on the effect of elevated CO2 on C dynamics in cultivated croplands are critical to a better understanding of the C cycling in response to climate change in agroecosystems. To evaluate the effects of elevated CO2 and different N fertilizer application levels on soil respiration, winter wheat (Triticum aestivum L. cv. Yangmai 14) plants were exposed to either ambient CO2 or elevated CO2 (ambient [CO2] + 200 μmol mol-1), under N fertilizer application levels of 112.5 and 225 kg N ha-1 (as low N and normal N subtreatments, respectively), for two growing seasons (2006-2007 and 2007-2008) in a rice-winter wheat rotation system typical in China. A split-plot design was adopted. A root exclusion method was used to partition soil respiration (RS) into heterotrophic respiration (RH) and autotrophic respiration (RA). Atmospheric CO2 enrichment increased seasonal cumulative RS by 11.8% at low N and 5.6% at normal N when averaged over two growing seasons. Elevated CO2 significantly enhanced (P 〈 0.05) RS (12.7%), mainly due to the increase in RH (caused by decomposition of larger amounts of rice residue under elevated CO2) during a relative dry season in 2007-2008. Higher N supply also enhanced RS under ambient and elevated CO2. In the 2007-2008 season, normal N treatment had a significant positive effect (P 〈 0.01) on seasonal cumulative RS relative to low N treatment when averaged across CO2 levels (16.3%). A significant increase in RA was mainly responsible for the enhanced RS under higher N supply. The correlation (r2) between RH and soil temperature was stronger (P 〈 0.001) than that between RS and soil temperature when averaged across all treatments in both seasons. Seasonal patterns of RA may be more closely related to the plant phenology than soil temperature. The Q10 (the multiplier to the respiration rate for a 10 ℃ increase in soil temperature) values of RS and RH were not affected by elevated CO2 or higher N supply. These results mainly suggested that the increase in RS at elevated CO2 depended on the input of rice residue, and the increase in RS at higher N supply was due to stimulated root growth and concomitant increase in RA during the wheat growing portion of a rice-winter wheat rotation system.  相似文献   

18.
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.  相似文献   

19.
Land degradation causes great changes in the soil biological properties.The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity.The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation(NV),moderately degraded land(LDL),highly degraded land(HDL) and land under restoration for four years(RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil.Soil samples were collected at 0-10 cm depth.Soil organic carbon(SOC),soil microbial biomass C(MBC) and N(MBN),soil respiration(SR),and hydrolysis of fluorescein diacetate(FDA) and dehydrogenase(DHA) activities were analyzed.After two years of evaluation,soil MBC,MBN,FDA and DHA had higher values in the NV,followed by the RL.The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV.However,after land restoration,the MBC and MBN increased approximately 5-fold and 2-fold,respectively,compared with the HDL.The results showed that land degradation produced a strong decrease in soil microbial biomass.However,land restoration may promote short-and long-term increases in soil microbial biomass.  相似文献   

20.
XU Jian-Xin  XUE Li  SU Zhi-Yao 《土壤圈》2016,26(3):408-416
During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m~2) and five small(30–40 m~2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号