首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0--60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.05), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.  相似文献   

2.
退化喀斯特植被恢复与土壤微生物特征的关系   总被引:10,自引:0,他引:10  
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.  相似文献   

3.
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.  相似文献   

4.
Current methods that utilize simple data or models to evaluate soil restoration under ecological restoration are not sufficiently rigorous.Soil restoration under ecological restoration measures was evaluated in the red soil hilly region of China by applying the catastrophe model.Among 89 soil sites selected,26 (29.21%) were in the middle lobe,10 (11.24%) in the upper lobe,and 53 (70.79%) in the lower lobe of the process surface in the Cusp catastrophe model.The catastrophic direction of the 26 unstable soil sites was to the upper lobe of the process surface according to vegetation cover change and fieldwork.There was a significant negative correlation of the variation in bifurcation set (△ value) with vegetation cover increase,and a higher vegetation cover increase was related to higher unstable probability.The four ecological restoration measures were listed in the order:low-quality forest improvement (LQFI) > arbor-bush-herb mixed plantation (ABHMP) > orchard improvement (OI) > closing measures (CM) according to the proportions of unstable soil sites,which were all higher than no restoration measure,while they were in the order:LQFI < ABHMP < OI < CM according to their △ values,which were all lower than those of no restoration measure.Farmers' assessment of soil restoration under the four ecological restoration measures was in accordance with the proportions of unstable soil sites and inversely proportional to the △ value.Therefore,farmers' assessment can prove the evaluation of soil restoration under ecological restoration measures based on catastrophe model.  相似文献   

5.
Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (N0), 126 (N1), 157.5 (N2), and 210 kg N ha-1 (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water-controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungal PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha-1) treatment under the water-controlled irrigation pattern.  相似文献   

6.
Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.  相似文献   

7.
我国中亚热带丘陵地区红壤的肥力恢复   总被引:1,自引:1,他引:0  
There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil pH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped.  相似文献   

8.
中国东南部红壤地区不同植被对土壤侵蚀和土壤养分的影响   总被引:31,自引:0,他引:31  
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF), citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br). The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP, TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers. However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.  相似文献   

9.
Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China.This study investigated two rice-wheat rotation lands(one reclaimed from 1995 to 2004 and cultivated since 2005, RW1, and the other reclaimed from 1975 to 1995 and cultivated since 1996, RW2) and a poplar woodland(reclaimed from 1995 to 2004 and planted in2004, PW1) to determine the effects of land use types and years of cultivation on soil microbial biomass and mineralizable carbon(C) in this coastal salt-affected region. The results showed that the soil in PW1 remained highly salinized, whereas desalinization was observed in RW1. The total organic C(TOC) in the top soil of PW1 and RW1 did not show significant differences, whereas at a soil depth of 20–30 cm, the TOC of RW1 was approximately 40%–67% higher than that of PW1. The TOC of 0–30-cm soil in RW2 was approximately 37% higher than that in RW1. Microbial biomass C(MBC) and mineralizable C(MNC) exhibited the trend of RW2 RW1 PW1. Sufficient nutrition with more abundant C substrates resulted in higher MBC and MNC, and soil respiration rates were negatively correlated with C/N in RW1 and RW2. Nutrient deficiency and high salinity played key roles in limiting MBC in PW1. These suggested that rice-wheat rotation was more beneficial than poplar afforestation for C accumulation and microbial biomass growth in the coastal salt-affected soils.  相似文献   

10.
Abandonment of agricultural land results in on-and off-site consequences for the ecosystem. In this study, 105 rainfall simulations were carried out in agriculture lands of the Mediterranean belt in Spain(vineyards in Málaga, almond orchards in Murcia, and orange and olive orchards in Valencia) and in paired abandoned lands to assess the impact of land abandonment on soil and water losses. After abandonment, soil detachment decreased drastically in the olive and orange orchards, while vineyards did not show any difference and almond orchards registered higher erosion rates after the abandonment. Terraced orchards of oranges and olives recovered a dense vegetation cover after the abandonment, while the sloping terrain of almond orchards and vineyards enhanced the development of crusts and rills and a negligible vegetation cover resulted in high erosion rates. The contrasted responses to land abandonment in Mediterranean agricultural lands suggest that land abandonment should be programmed and managed with soil erosion control strategies for some years to avoid land degradation.  相似文献   

11.
The aim of this study was to investigate the response of soil microbial biomass and organic matter fractions during the transition from conventional to organic farming in a tropical soil. Soil samples were collected from three different plots planted with Malpighia glaba: conventional plot with 10 years (CON); transitional plot with 2 years under organic farming system (TRA); organic plot with 5 years under organic farming system (ORG). A plot under native vegetation (NV) was used as a reference. Soil microbial biomass C (MBC) and N (MBN), soil organic carbon (SOC) and total N (TN), soil organic matter fractioning and microbial indices were evaluated in soil samples collected at 0–5, 5–10, 10–20 and 20–40 cm depth. SOC and fulvic acids fraction contents were higher in the ORG system at 0–5 cm and 5–10 cm depths. Soil MBC was highest in the ORG, in all depths, than in others plots. Soil MBN was similar between ORG, TRA and NV in the surface layer. The lowest values for soil MBC and MBN were observed in CON plot. Soil microbial biomass increased gradually from conventional to organic farming, leading to consistent and distinct differences from the conventional control by the end of the second year.  相似文献   

12.
土壤微生物特性是土壤养分的储存库,土壤养分也影响土壤微生物活性,了解两者的相互作用机制对土地利用与管理提供理论依据,而喀斯特地区不同土地利用方式相关研究较少。基于喀斯特峰丛洼地火烧、刈割、刈割除根、封育、种植玉米、种植桂牧1号杂交象草6种坡面典型的土地利用方式的动态监测样地建设与调查,该文分析了不同土地利用方式下土壤微生物特性,揭示其与土壤养分相互作用机制。结果表明,不同土地利用方式对土壤养分的影响不同,土壤有机质(soil organic matter,SOM)、全氮(total nitrogen,TN)、全磷(total phosphorus,TP)、碱解氮(available nitrogen,AN)等沿封育、火烧、刈割、刈割除根、种植桂牧1号、种植玉米等土地利用方式的转变而减少;不同土地利用方式土壤微生物生物量各不同,土壤微生物量碳(microbial biomass carbon, MBC):244.98~1 246.89 mg/kg、土壤微生物量氮(microbial biomass nitrogen,MBN):35.44~274.69 mg/kg、土壤微生物量磷(microbial biomass phosphorus,MBP):30.88~64.72 mg/kg,其中,种植玉米土壤微生物生物量均最低,其土壤质量退化现象严重;不同土地利用方式土壤微生物种群数量及组成影响不同,种植玉米和桂牧1号杂交象草细菌占绝对优势,而火烧、刈割、刈割除根及封育均以放线菌占绝对优势,真菌的比例很少;不同土地利用方式土壤微生物特性与土壤养分之间相互作用关系不同:火烧的土壤TP和MBP、全钾(total potassium,TK)与MBC、TN与放线菌作用最强且均呈正相关,刈割的土壤TN与MBC呈正相关,刈割除根的速效磷(available phosphorus,AP)与MBN正相关,封育的pH值与MBC、真菌负相关,种植玉米的TN、TK与MBP负相关,种植桂牧1号杂交象草的pH值与真菌负相关、与放线菌正相关;聚类分析可以将喀斯特峰丛洼地6种土地利用方式划分为4类,其中封育和火烧最好。  相似文献   

13.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

14.
为探究侵蚀退化红壤马尾松林恢复过程中林下芒萁对土壤微生物生物量碳氮月动态及其周转的影响,以不同恢复年限的马尾松林为研究对象,对比分析马尾松林恢复过程中林下保留芒萁、去除芒萁处理和林下裸地土壤中12个月的土壤微生物生物量碳(MBC)和微生物量氮(MBN)含量及其周转速率、周转时间和流通量,并分析其与土壤理化性状的关系。结果表明:(1)保留芒萁覆盖处理的MBC和MBN平均含量分布比林下裸地提高26.99%~277.31%和13.54%~173.39%,而去除芒萁处理分布比保留芒萁处理降低12.29%~27.01%和5.02%~28.45%,差异均随恢复年限呈先降低后增加的趋势。(2)所有处理的土壤微生物量碳氮季节动态均表现为春夏季较高,秋冬季较低的趋势,进入生长季前的土壤微生物量碳氮含量更能反映该地区的平均水平。(3)在退化马尾松林恢复过程中,芒萁覆盖降低土壤微生物生物量碳氮周转速率,增加周转时间,提高土壤微生物生物量碳氮含量和流通量,促进土壤有机质的积累和养分释放。相关分析和逐步回归分析表明,MBC、MBN流通量分别与DOC、DON呈显著正相关,周转速率分别与铵态氮(NH4+-N)和TN呈显著负相关,表明土壤碳和氮及其有效性是影响土壤微生物量周转的关键因素。  相似文献   

15.
Loss of soil organic matter under cropping systems is often considered one of the most serious forms of agriculturally induced soil degradation. Therefore, understanding how to improve or maintain soil fertility is of importance for sustainable systems of agriculture. This study deals with the effects of succession fallow and fertilization combined with crop rotation on the chemical properties and microbial biomass of soil in the central Loess Plateau, China. In order to create a more uniform experimental environment and avoid the influence of different crop residues, wheat/potato (W/P) rotation was selected as a fertilization treatment. The results showed that with increasing fallow time organic carbon (Corg) and total nitrogen (TN) slightly increased, microbial biomass carbon (MBC) and MBC/Corg gradually decreased, and microbial biomass nitrogen (MBN) remained unchanged. However, only MBC/Corg among all the microbial parameters measured showed significant differences at various stages of fallow. Although there was a decrease in organic carbon and total nitrogen in the fertilized plots, MBC was not significantly different in the various fallow and fertilized plots except for one‐year‐old fallows, which had the highest MBC. MBN, MBC/Corg and MBN/TN in fertilized plots were higher than for plots at different stages of fallow. Fertilization can increase organic carbon, total nitrogen, MBC and MBN content (compared to the control). It was concluded that appropriate land management, such as fertilization combined with crop rotation and reducing one‐year‐old fallow, would be useful ways to improve or maintain soil fertility. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
干旱区绿洲苜蓿地土壤微生物特性及其影响因子   总被引:4,自引:0,他引:4  
研究了干旱区绿洲种植年限不同的3种苜蓿地0-10 cm,10-20 cm土层土壤微生物量碳、微生物量氮、微生物量商、呼吸强度和代谢商的变化特征。结果表明:在耕层0-20 cm范围内,苜蓿种植年限的长短对土壤微生物量碳、土壤微生物量氮含量有影响,相对来说微生物量碳、氮在四年生苜蓿地的含量最高,其次是一年生苜蓿地的。不同种植年限苜蓿地之间土壤微生物量商(qMB)、呼吸强度、代谢商(qCO2)差异显著,相对来说种植年限相差越大,差异越大。相关分析结果表明,土壤理化特性对土壤微生物活性有影响,其中土壤微生物量碳、微生物量氮与土壤有机质、全氮显著正相关,与土壤容重显著负相关。  相似文献   

17.
以渭北黄土高原苹果园土壤为研究对象,设置传统苹果(Malus domestica Borkh.)园清耕及间作白三叶(Trifolium repens L.)两个处理,测定和分析了不同土层(0—5 cm,5—10 cm,10—20 cm及20—40 cm)的土壤微生物量碳(SMBC)、氮(SMBN)、4种土壤酶活性、有机碳(SOC)和全氮(TN)等指标,从土壤微生物碳、氮及酶活性的角度探讨间作白三叶对苹果/白三叶复合系统土壤的影响。结果表明:间作白三叶能够显著提高土壤微生物量碳、氮的含量和土壤酶活性,提高土壤微生物对有机碳和全氮的利用效率,其作用随着土层深度的增加而降低,在表层土壤效果更为显著。土壤微生物量碳、氮及土壤酶活性与土壤有机碳、全氮呈极显著相关或显著性相关。苹果园土壤微生物量碳、氮及土壤酶活性能敏感响应生草间作,可以作为评价果园生草对果园土壤影响的良好指标。  相似文献   

18.
山核桃集约经营过程中土壤微生物量碳氮的变化   总被引:1,自引:1,他引:1  
[目的]研究不同集约经营历史山核桃林的土壤微生物量碳氮的演变规律,为山核桃林地土壤管理提供科学依据。[方法]在浙江省临安市分别采集并分析了经营历史为5,10,15,20a的山核桃林土壤样品,并与天然混交林(0a)进行比较。[结果]天然混交林改造为山核桃纯林并经集约经营后,林地土壤微生物量碳(MBC)、微生物量氮(MBN)、MBC/MBN,MBC/SOC均表现出先下降而后上升的趋势,经过10a经营后降到最低水平,与0a相比,0—10cm土层MBC,MBN和MBC/SOC分别降低了52.1%,32.0%和31.0%。经营10a的林地土壤MBC/MBN显著低于前期经营林地,而MBN/TN在经营过程中的差异并不显著。[结论]山核桃集约经营后,林地土壤微生物量碳氮含量显著下降。  相似文献   

19.
A study was conducted to examine the impact of land use on soil fertility in an Entisol in the Jalpaiguri District of humid subtropical India. The natural forest served as a control against which changes in soil properties were compared. Soil samples were collected from four different depths (0–25, 25–50, 50–75, and 75–100 cm) of soil from four land uses (viz. forest, home garden, arecanut plantation, and agriculture) and examined for pH, organic carbon (OC), electrical conductivity (EC), cation exchange capacity, available nitrogen (N), phosphorus (P), exchangeable calcium (Ca), magnesium (Mg), potassium (K), aluminum (Al), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and dehydrogenase activity (DHA). Soil pH (5.7), OC (2.29%), N (386 kg ha?1), and P (22.54 kg ha?1) were greatest in forest soil, followed by soil from arecanut plantation, agriculture, and home garden. The greatest Ca (0.892 cmol kg?1), Mg (0.527 cmol kg?1), and Al (1.86 cmol kg?1) were found in the arecanut plantation, whereas K (0.211 cmol kg?1) was greatest in forest. The greatest content of diethylenetriaminepentaacetic acid–extractable copper, zinc, manganese, and iron (2.25, 1.66, 4.86, and 7.65 ppm, respectively) were found in forest. MBC (558 mg kg?1), MBN (26.67 mg kg?1), and DHA (33.03 μg TPF 24 h?1 g?1) was greatest in forest soil. Soil fertility index varied from 13.13 in arecanut plantation to 18.49 in forest. The soil evaluation factor ranged from 5.32 in agriculture to 6.56 in forest. Pearson's correlation matrix revealed strongly significant positive correlation of soil fertility index and soil evaluation factor with soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号