首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   6篇
林业   21篇
基础科学   7篇
  14篇
综合类   23篇
水产渔业   1篇
畜牧兽医   1篇
园艺   1篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2013年   1篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
31.
靳祥升  王琴 《安徽农业科学》2006,34(10):2030-2031
利用地面立体摄影技术研究水土流失,拓宽了水土流失研究领域,开辟了小面积水土流失研究新方法。  相似文献   
32.
数字近景摄影测量在河工模型试验中的应用   总被引:1,自引:0,他引:1  
传统常规的测量手段具有工作量大、效率低、费用高、精度低等多方面的问题。介绍了基于非量测数字相机的近景摄影测量方法,通过解算观测点的空间三维坐标,结合平甸河河工模型试验的实例进行分析,结果表明,数字近景摄影精度高,能很好地解决河工模型试验的测量问题。  相似文献   
33.
植被覆盖度及其测算方法研究进展   总被引:33,自引:0,他引:33  
植被是陆地生态系统的主要组份、是生态系统变化的指示器。植被覆盖度作为植被生长状况的直观量化指标,在水文、气象、生态等方面的区域或全球性问题研究中起越来越重要的作用,植被覆盖度的测算是否精准很大程度上影响着相关研究结论是否科学合理。本文综述了植被覆盖度在自然地理研究中的应用情况,分类归纳了植被覆盖度的测算方法,并分析了各种方法的特点、优势及其存在的问题,同时指出了植被覆盖度测算方法今后的发展趋势和研究重点。  相似文献   
34.
[目的]研究枣树坐标参数的数字近景摄影测量。[方法]应用Lensphoto多基线数字近景摄影测量系统,对8年生枣树的三维坐标参数进行了近景摄影测量,并将摄影测量数据与全站仪测量数据进行了比较。[结果]对于较多小细枝的枣树,X、Y、Z坐标的绝对误差分别为0~0.014、0~0.018、0~0.004m,相对误差均低于0.145%。摄影测量坐标值和真值配对数据的显著性检验和线性回归分析表明,该测量方法能够获得真实可靠的数据,做到精准监测,满足虚拟植物生长模拟的坐标数据测定要求。[结论]为虚拟植物模拟的树木生长观测提供了理论依据  相似文献   
35.
土壤侵蚀形态演化数字摄影观测系统设计与实验   总被引:2,自引:0,他引:2  
为解决目前在连续降雨条件下尚无有效的观测技术与手段从时空两个维度对土壤侵蚀过程进行观测的问题,设计了一种基于无线组网技术的数字近景摄影观测系统。该系统通过对连续降雨条件下不同时间节点的土壤侵蚀坡面进行数字影像的瞬时采集、雨滴噪声去除、点云匹配、三维重建等手段,实现对土壤侵蚀坡面形态演化过程的动态监测。该系统的测量精度可达到亚毫米级,最小测量误差为0. 006 2 mm;凹槽尺寸测量值与实测值之间最大相对误差为-2. 968 3%。土壤侵蚀坡面观测实证表明,土壤流失量估算平均相对误差为-1. 73%,单次观测精度最高可达99. 26%,时间观测分辨率可达到分钟级别,空间分辨率达到2 mm。该系统能够准确获取土壤侵蚀坡面形态变化的精细信息,可为土壤侵蚀过程研究提供新的方法和技术手段。  相似文献   
36.
Forest variables are typically surveyed using sample plots, from which parameters for large areas are estimated. The diameter at breast height (DBH) is one of the main variables collected in the field and can be used with other forest measures. This study presents an automatic technique for the mapping and measurement of individual tree stems using vertical terrestrial images collected with a fisheye camera. Distinguishable points from the stem surface are automatically extracted in the images, and their 3D ground coordinates are determined by bundle adjustment. The XY coordinates of each stem define an arc shape, and these points are used as observations in a circle fitting by least squares. The circle centre determines the tree position in a local reference system, and the estimated radius is used to calculate the DBH. Experiments were performed in a sample plot to assess the approach and compare it with a technique based on terrestrial laser scanning. In the validation with measurements collected on the stems using a measuring tape, the discrepancies had an average error of 1.46?cm with a standard deviation of 1.09?cm. These results were comparable with the manual measurements and with the values generated from laser point clouds.  相似文献   
37.
This paper describes a workflow utilizing detailed canopy height information derived from digital airphotos combined with ground inventory information gathered in state-owned forests and regression modelling techniques to quantify forest-growing stocks in private woodlands, for which little information is generally available. Random forest models were trained to predict three different variables at the plot level: quadratic mean diameter of the 100 largest trees (d100), basal area weighted mean height of the 100 largest trees (h100), and gross volume (V). Two separate models were created – one for a spruce- and one for a beech-dominated test site. We examined the spatial portability of the models by using them to predict the aforementioned variables at actual inventory plots in nearby forests, in which simultaneous ground sampling took place. When data from the full set of available plots were used for training, the predictions for d100, h100, and V achieved out-of-bag model accuracies (scaled RMSEs) of 15.1%, 10.1%, and 35.3% for the spruce- and 15.9%, 9.7%, and 32.1% for the beech-dominated forest, respectively. The corresponding independent RMSEs for the nearby forests were 15.2%, 10.5%, and 33.6% for the spruce- and 15.5%, 8.9%, and 33.7% for the beech-dominated test site, respectively.  相似文献   
38.
In this research, we developed and tested a remote sensing-based approach for stand age estimation. The approach is based on changes in the forest canopy height measured from a time series of photo-based digital surface models that were normalized to canopy height models using an airborne laser scanning derived digital terrain model (DTM). Representing the Karelian countryside, Finland, CHMs from 1944, 1959, 1965, 1977, 1983, 1991, 2003, and 2012 were generated and allow for characterization of forest structure over a 68-year period. To validate our method, we measured stand age from 90 plots (1256?m2) in 2014, whereby producer's accuracy ranged from 25.0% to 100.0% and user's accuracy from 16.7% to 100.0%. The wide range of accuracy found is largely attributable to the quality and characteristics of archival images and intrastand variation in stand age. The lowest classification accuracies were obtained for the images representing the earliest dates. For forest managers and agencies that have access to long-term photo archives and a detailed DTM, the estimation of stand age can be performed, improving the quality and completeness of forest inventory databases.  相似文献   
39.
基于CCD超站仪的森林样地建立与精测方法研究   总被引:2,自引:0,他引:2  
为了能够快捷、精准地进行固定样地定位和样木胸径测量,提出一种利用CCD超站仪按测带进行像对观测的方法,在GPS/RTK确定或假定的观测点上架设仪器,借助全站仪坐标测量和角度测量功能精确记录CCD摄影瞬间的外方位元素,并确定出其他观测点坐标,选择合适基线长建立像对进行观测,提取目标位置的相对三维坐标,以"S"形路线按测带进行测量,配合少量的人工补测和相关坐标系的旋转变换,实现森林固定样地精准建立和胸径精测的目的。通过实地测试,表明利用该方法能够以较少的站点实现固定样地的建立,并将图像解算的胸径值与实地调查值进行对比,其平均相对误差为3.9%,解算均方根误差为1.2 cm。该方法在森林样地建立中有较好的应用前景。  相似文献   
40.
多基线数字近景摄影测量系统测树方法及数据分析   总被引:1,自引:0,他引:1  
传统的测树方法是用轮尺、直径卷尺和检径尺(钩尺)、围尺等测量树的胸径,而对于树木上部直径的测量就显得无能为力,并且目前对于立木上部直径的测量都没有很好的方法(孟宪宇,2002;吴富桢,1992;大隅真一,1981).对于树高,在我国常用的是布鲁莱斯测高器,用该测高器时先要测出测点至树木的水平距离,且要等于整数10,15,20,30 m,测量效率较低,并且测量结果受人为因素影响较大,精度不够高(大隅真一,1981).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号