首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   13篇
  国内免费   5篇
林业   12篇
农学   12篇
基础科学   4篇
  45篇
综合类   89篇
农作物   19篇
水产渔业   16篇
畜牧兽医   123篇
园艺   58篇
植物保护   6篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   22篇
  2013年   22篇
  2012年   29篇
  2011年   34篇
  2010年   29篇
  2009年   32篇
  2008年   35篇
  2007年   35篇
  2006年   15篇
  2005年   13篇
  2004年   12篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有384条查询结果,搜索用时 233 毫秒
1.
黄牛血糖测定三种不同方法的比较研究   总被引:3,自引:0,他引:3  
选择10~36月龄的役用母黄牛5头。用邻甲苯胺(o-TB)法、葡萄糖氧化酶(GOD)法和福-吴(Folin-Wu)二氏法进行血糖含量的测定。结果分别是:3.76±0.29mmoL/L、3.73±0.21mmoL/L和3.71±0.24mmoL/L。经统计分析,三种不同方法测定血糖的结果差异不显著(P>0.05),其中以邻甲苯胺法较为理想,它具有所需试剂种类少、测定时间短和操作简单的优点。建议以其作为黄牛血糖测定的首选方法。  相似文献   
2.
Fungal N2O production results from a respiratory denitrification that reduces NO3/NO2 in response to the oxidation of an electron donor, often organic C. Despite similar heterotrophic nature, fungal denitrifiers may differ from bacterial ones in exploiting diverse resources. We hypothesized that complex C compounds and substances could favor the growth of fungi over bacteria, and thereby leading to fungal dominance for soil N2O emissions. Effects of substrate quality on fungal and bacterial N2O production were, therefore, examined in a 44-d incubation after soils were amended with four different substrates, i.e., glucose, cellulose, winter pea, and switchgrass at 2 mg C g−1 soil. During periodic measurements of soil N2O fluxes at 80% soil water-filled pore space and with the supply of KNO3, substrate treatments were further subjected to four antibiotic treatments, i.e., no antibiotics or soil addition of streptomycin, cycloheximide or both so that fungal and bacterial N2O production could be separated. Up to d 8 when antibiotic inhibition on substrate-induced microbial activity and/or growth was still detectable, bacterial N2O production was generally greater in glucose- than in cellulose-amended soils and also in winter pea- than in switchgrass-amended soils. In contrast, fungal N2O production was more enhanced in soils amended with cellulose than with glucose. Therefore, fungal-to-bacterial contribution ratios were greater in complex than in simple C substrates. These ratios were positively correlated with fungal-to-bacterial activity ratios, i.e., CO2 production ratios, suggesting that substrate-associated fungal or bacterial preferential activity and/or growth might be the cause. Considering substrate depletion over time and thereby becoming limited for microbial N2O production, measurements of soil N2O fluxes were also carried out with additional supply of glucose, irrespective of different substrate treatments. This measurement condition might lead to potentially high rates of fungal and bacterial N2O production. As expected, bacterial N2O production was greater with added glucose than with added cellulose on d 4 and d 8. However, this pattern was broken on d 28, with bacterial N2O production lower with added glucose than with added cellulose. In contrast, plant residue impacts on soil N2O fluxes were consistent over 44-d, with greater bacterial contribution, lower fungal contribution, and thus lower fungal-to-bacterial contribution ratios in winter pea- than in switchgrass-amended soils. Real-time PCR analysis also demonstrated that the ratios of 16S rDNA to ITS and the copy numbers of bacterial denitrifying genes were greater in winter pea- than in switchgrass-amended soils. Despite some inconsistency found on the impacts of cellulose versus glucose on fungal and bacterial leading roles for N2O production, the results generally supported the working hypothesis that complex substrates promoted fungal dominance for soil N2O emissions.  相似文献   
3.
4.
为了研究葡萄糖对水热炭化反应过程和水热焦形成的影响,以麦秆为原料,利用高温高压反应釜,对麦秆在葡萄糖水溶液环境中的炭化反应过程和水热焦理化结构演变及液相产物主要组分浓度分布的变化进行了分析。研究发现,在反应温度220℃,停留时间120 min条件下,随着葡萄糖添加量的增加,水热焦产率和碳质量分数有所增加,而氢和氧质量分数未发生明显改变,当葡萄糖添加量为麦秆质量的0.4倍时,水热焦产率达68.56%;葡萄糖分子阻碍了麦秆中主要化学组分的分解与炭化反应,使得水热焦炭聚合物的红外吸收特征峰减弱,同时XRD衍射峰强度降低,热稳定性下降,如选择水热炭化过程水循环利用,可进行可溶性糖分离;在麦秆与葡萄糖共同水热炭化过程中,葡萄糖以分解反应为主,同未添加葡萄糖的麦秆水热炭化液相产物相比,糠醛、5-HMF和乙酸的质量浓度均有所增加,其中5-HMF增加最为显著,至葡萄糖添加量为4 g时,达20.21 g/L。  相似文献   
5.
高钾血症是临床上多种疾病所并发的一种常见病理生理过程。血钾升高的最大危害是心肌毒性,它可引起机体心律失常甚至心脏停搏危及生命。因此,预防高钾血症的发生和采取有效的处理方法,一直是病理生理学研究的热点问题之一。了解高血钾对心肌细胞的毒性作用及寻找抢救方法。制备高血钾家兔模型,并分别用葡萄糖酸钙、NaHCO3进行抢救。高钾血症时,心电图可见家兔心律失常,并且T波高耸,Q—T间期缩短,同时,还会使机体的呼吸系统发生变化;用葡萄糖酸钙、NaHCO3后,抢救成功。高血钾对心脏有毒性作用,浓度升高速度越快,毒性作用越大。静脉推注高葡萄糖溶液、NaHCO3溶液都对缓解高血钾症有一定的作用;心电图可作为诊断高血钾,判定其程度和观察疗效的重要指标。  相似文献   
6.
Chromium is an essential dietary trace mineral involved in carbohydrate and lipid metabolism. Chromium is required for cellular uptake of glucose, and chromium deficiency causes insulin resistance. Chromium supplementation may improve insulin sensitivity and has been used as adjunct treatment of diabetes mellitus in humans. In this study, 13 dogs with naturally acquired diabetes mellitus were treated with insulin for 3 months, then with insulin and chromium picolinate for 3 months. Dogs weighing <15 kg (33 lb: n = 9) were administered 200 microg of chromium picolinate PO once daily for I month, then 200 microg of chromium picolinate twice daily for 2 months. Dogs weighing >15 kg (n = 4) received 200 microg of chromium picolinate once daily for 2 weeks, then 200 microg twice daily for 2 weeks, then 400 microg twice daily for 2 months. Type of insulin, frequency of insulin administration, and diet were kept constant, and insulin dosage was adjusted, as needed, to maintain optimal control of glycemia. Mean body weight, daily insulin dosage, daily caloric intake, 10-hour mean blood glucose concentration, blood glycated hemoglobin concentration, and serum fructosamine concentration were not markedly different when dogs were treated with insulin and chromium picolinate, compared with insulin alone. Adverse effects were not identified with chromium picolinate administration. Results of this study suggest that, at a dosage range of 20-60 microg/kg/d, chromium picolinate caused no beneficial or harmful effects in insulin-treated diabetic dogs.  相似文献   
7.
The objectives of this study were to characterize the glycemic and insulinemic responses of Thoroughbred broodmares fed late spring pasture only or a mixture of pasture and a high starch or low starch feed and to test hypotheses about differences in the glycemic and insulinemic effects of these dietary regimes. A group of 15 mares were divided into three treatment groups; pasture and high starch feed (PHS), pasture and low starch feed (PLS), and pasture only (PO) and maintained in these groups for 4.5 months prior to this study. These groups were maintained on a single pasture that was temporarily divided into three sections. The study protocol was conducted over two days. On day 1 the mares were fed their respective treatments and on day 2 all mares were allowed access to pasture only. On both days plasma glucose and insulin were measured in samples taken over a 7.5 h period. Baseline measurements for glucose and insulin were not different between any of the treatment groups on either day (P > 0.05). The baseline insulin concentrations of these pasture-kept mares (26.7 ± 8.3 mIU/L) were high compared to those reported from stall-kept horses. Plasma glucose and insulin on day 1 were influenced by treatment group, sample time, and an interaction between treatment and time (P < 0.05). On day 2 there was no significant influence of treatment group (P > 0.05). Glucose and insulin rose to higher (P < 0.01) peak concentrations in the PHS group on day 1 when compared to the PLS and PO groups, with no difference (P > 0.05) detected between the PLS and PO groups. These results are reflected in greater areas under the concentration-time curves for glucose and insulin in the PHS group on day 1 (P < 0.05). On day 2 there were no differences in any of the glucose and insulin characteristics for any of the treatment groups (P > 0.05). These results indicate a clear difference in the glycemic and insulinemic effect of the PHS feed compared to the PLS and PO groups. Of further interest are the glucose and insulin characteristics of these pasture-kept mares that indicate a low insulin sensitivity and high insulin secretory response. This study provides further information on factors influencing glycemic and insulinemic responses in horses.  相似文献   
8.
Four growing pigs (initial liveweight 25.9 ± 0.54 kg, final liveweight 43.0 ± 1.06 kg) were used to study the effect of dietary lysine level on nutrient digestibility, whole-body protein turnover, plasma insulin-like growth factor-I (IGF-I), growth hormone (GH), insulin, glucose, and urea nitrogen (PUN). Four diets, containing 7.0 g (L1), 9.5 g (L2), 12.0 g (L3) and 14.5 g (L4) lysine per kg diet respectively, were formulated as experimental treatments. The animals and diets were allocated in a 4 × 4 Latin square design. Nitrogen (N) metabolism and whole-body protein turnover were measured by classical method and single-dose 15N end-product method, respectively. The blood samples were taken at the end of each experimental period. Results showed that N retention (NR) and N biological value (NBV) were significantly increased from L1 to L4 (P < 0.05). However, differences in NR and NBV between L2, L3 and L4 were not significant (P > 0.05). There was no significant difference on dry matter (DM) digestibility, organic matter (OM) digestibility and N digestibility between different treatments (P > 0.05). Whole-body protein synthesis, protein degradation and protein accretion increased markedly from L1 to L2 (P < 0.05), but did not increase further from L2 to L4. Whole-body protein accretion (y, g/kg W0.75/d) increased with dietary lysine (x, g/kg) in a quadratic manner: y = − 0.09x2 + 2.12x − 5.14 (r2 = 0.96, n = 4, P < 0.05).The results also showed that differences in plasma IGF-I, GH, glucose and PUN concentration between different treatments were not significant (P > 0.05). Plasma insulin concentration (y, μIU/ml) was increased with dietary lysine (x, g/kg) in a quadratic manner: y = 0.23x2 − 4.10x + 32.25 (r2 = 0.99, n = 4, P < 0.05), but it was not found that plasma insulin concentration was related to NR. A significant correlation was found between NR (y, g/d) and plasma IGF-I (x, ng/ml): y = − 3.1 × 10− 3x2 + 1.31x − 122.28 (r2 = 0.99, n = 4, P < 0.05).It was concluded that dietary lysine level had a significant influence on NR and whole-body protein turnover but not on plasma IGF-I and GH concentration. Plasma IGF-I may be an important factor controlling N metabolism of growing pigs. Further research was needed to study the mechanism.  相似文献   
9.
In recent years, intestinal transport processes have been studied in detail regarding both, functional and structural aspects. For monosaccharides different systems have been demonstrated for apical uptake: this includes the high-affinity SGLT1 as a distinct d-glucose system and GLUT5 for fructose. Specifically in pigs a low affinity, high-capacity system for d-glucose and d-mannose with no preference for Na+ over K+ and a very low affinity system are suggested as further uptake systems. As in other species, basolateral extrusion is mediated by GLUT2. The distributions of monosaccharide transport along the gastrointestinal axis as well as the potential role of paracellular monosaccharide absorption have not yet been clarified.

Amino acids can principally be absorbed by the paracellular and transcellular pathway whereas transcellular transport can either be mediated by facilitated diffusion or secondary active Na+-coupled transport. This includes different transport systems for neutral, anionic and cationic acids. In addition, the presence of the di-/tripeptides transport system PEPT1 which depends on an inwardly directed H+-gradient has also been confirmed for the pig small intestine, its quantitative proportion is still under debate.

Short chain fatty acids (SCFA) are the major end products of microbial carbohydrate fermentation which occurs along the gastrointestinal tract with the highest production rates in the large intestines. At least two uptake mechanisms have to be assumed, i.e., non-ionic diffusion and anionic exchange via SCFA/HCO3-exchange. Controversial views still exist to what extent SCFA are metabolized within the epithelial tissue.

Segmental differences between small and large intestines have been demonstrated for Na+ absorption. Whereas in the small intestines the major part of Na+ absorption is mediated by coupled nutrient transport systems, aldosterone sensitive Na+ channels and Na+/H+-exchange are the dominant mechanisms in the hindgut. For Cl paracellular transport and anionic Cl/HCO3-exchange are the major absorptive mechanisms. Cl secretion is mediated by apical channels which may be activated by toxins of different origin. Different types of Cl channels have been identified, such as Cystic Fibrosis Transmembrane Regulator (CFTR), Ca-activated Cl channels (CLCA) and Outwardly Rectifying Cl Channels (ORCC). Whereas CFTR has clearly been shown for jejunal and colonic epithelial and goblet cells controversy still exists on the relevance of CLCA and ORCC in pigs.

For Ca2+ there is evidence that both recently published channels TRPV5 and TRPV6 are also expressed in pig intestinal tissues, however, this has not yet been shown on protein level. From several functional approaches it was demonstrated that phosphate uptake can be mediated by both, a Na+-dependent transcellular component and paracellularly. On a molecular basis it is uncertain whether the transport protein of transcellular mechanism belongs to the NaPi-IIb cotransporter family.  相似文献   

10.
Fetal protein restriction is potentially associated with organ dysfunctions after birth (e.g. impaired gut growth, glucose tolerance and pancreatic β-cell function). Just after birth, gut growth and maturation is stimulated by enteral food intake, and inhibited by total parenteral nutrition (TPN), in part mediated via differential release of insulino- and intestino-tropic hormones like the Glucagon-Like Peptides 1 and 2 (GLP-1, GLP-2). We hypothesized that short-term co-infusion of GLP-1 and GLP-2 would stimulate pancreatic and intestinal growth in newborn TPN-fed pigs subjected to prenatal protein restriction. Two sows were fed a protein-restricted diet (PR: 8% crude protein during last 50% of gestation) while a third sow was fed a control diet (C: 15% crude protein). PR pigs were killed either at birth (n = 7) or after 3 days TPN with (n = 6) or without (n = 4) intravenous infusion of a mixture of synthetic human GLP-17–37 and GLP-21–33 (each 50 μg/kg/d). At birth, PR piglets did not show reduced body weight, relative to controls (1.45 vs. 1.50 kg), but significantly reduced weight of the small intestine (18.0 ± 0.6 vs. 21.9 ± 0.5 g/kg, P < 0.001) and a marginally reduced pancreas weight (0.85 ± 0.02 vs. 0.93 ± 0.04 g/kg, P = 0.10). Co-infusion GLP-1 and GLP-2 into PR pigs resulted in increased basal glucose levels (5.3 vs. 4.0 mM), and glucose-stimulated insulin release, but did not have any significant effect on body weight, or weight of internal organs (heart, lungs, spleen, kidneys, adrenals, stomach, colon, liver, intestine, pancreas). We conclude that short-term (3 days) infusion of native GLP-1 and GLP-2 does not stimulate gut growth or glucose tolerance in TPN-fed piglets born from protein-restricted mothers. Moderate maternal protein restriction does however cause significant reduction in intestinal growth in newborn piglets which may decrease the neonatal digestive capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号