首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitrous oxide (N2O) is a greenhouse gas that is destroying the stratospheric ozone to an increasing degree. Because of nitrogenous fertilizer application, agricultural soil is an important contributor of global N2O. In Japan, tea fields are amended with the highest level of N fertilizers among agricultural soils, causing soil acidification and large N2O flux. In soil, microbes play key roles in producing and consuming N2O. A previous study investigated net N2O production in tea fields using N2O flux measurement and soil incubation, which are indirect methods to analyze relevant processes of N2O production and consumption in soil. In the present study, to analyze N2O concentrations and isotopomer ratios (bulk nitrogen and oxygen isotope ratios, δ15Nbulk and δ18O, and intramolecular 15N site preference, SP) and to reveal most probable microbial production processes and consumption (N2O reduction to N2) process of N2O, soil gas was collected from a tea field (pH 3.1–4.5) at 10–50 cm depths using a silicone tube. The combination of fertilization, precipitation, and temperature rise produced significantly high N2O concentrations. During the period of high N2O concentration (above 5.7 ppmv), SP, the difference in 15N/14N ratio between central (α) and terminal (β) nitrogen position in the linear N2O molecule (βNαNO) showed low values of 1.4‰–9.8‰, suggesting that the contribution of bacterial denitrification (nitrifier-denitrification and bacterial denitrifier-denitrification) was greater than that of bacterial nitrification or fungal denitrification. High SP values of 15.0‰–20.1‰ obtained at 10, 35, and 50 cm depths on 31 May 2011 (after one of fertilizations) during which soil temperatures were 15.8 °C–17.9 °C and water-filled pore space (WFPS) was 0.73–0.89 suggest that fungal denitrification and bacterial nitrification contributed to N2O production to a degree equivalent to that of bacterial denitrification.  相似文献   

2.
Drained organic forest soils represent a hotspot for nitrous oxide (N2O) emissions, which are directly related to soil fertility, with generally higher emissions from N-rich soils. Highest N2O emissions have been observed in organic forest soils with low pH. The mechanisms for these high emissions are not fully understood. Therefore, the present study was conducted to gain a deeper insight into the underlying mechanisms that drive high N2O emissions from acid soils. Specifically, we investigated the microbial community structure, by phospholipid fatty acid analysis, along a natural pH gradient in an organic forest soil combined with measurements of physico-chemical soil properties. These were then statistically related to site-specific estimates of annual N2O emissions along the same natural pH gradient. Our results indicate that acidic locations with high N2O emissions had a microbial community with an increased fungal dominance. This finding points to the importance of fungi for N2O emissions from acid soils. This may either be directly via fungal N2O production or indirectly via the effect of fungi on the N2O production by other microorganisms (nitrifiers and denitrifiers). The latter may be due to fungal mediated N mineralization, providing substrate for N2O production, or by creating favourable conditions for the bacterial denitrifier community. Therefore, we conclude that enhanced N2O emission from acid forest soil is related, in addition to the known inhibitory effect of low pH on bacterial N2O reduction, to a soil microbial community with increased fungal dominance. Further studies are needed to reveal the exact mechanisms.  相似文献   

3.
The proportion between the fungal and bacterial biomass, the potential activity of denitrification, and the intensity of N2O production were determined in the soils (chernozem and soddy-podzolic) of secondary biocenoses formed upon the abandoning of agricultural lands. The substitution of meadow and forest vegetation for agrocenoses has led to an increase in the percentage of the fungal biomass in the upper soil horizons. The rate of the net N2O production after the soil moistening positively correlated with the content of nitrates. In the soddy-podzolic soil (pH 3.7–5.6), the rate of nitrous oxide production was higher than that in the chernozem (pH 6.1–6.8). The rate of N2O production was inversely proportional to the bacterial biomass in the soils.  相似文献   

4.
Cellulose, xylan, and glucose were compared in waterlogged soil as modifying factors of the redox potential (Eh), of the quantity of reducing equivalents, and of the soil capacity to produce N2O and CO2. During the study period (168 h) soils supplied with glucose and xylan showed a higher Eh decrease than the control soil and the soil treated with cellulose. In samples taken after 0, 24, 48, and 168 h, the soils supplied with C showed a higher number of reducing equivalents than the control soil did. These quantities were not correlated with Eh values, nor with N2O production. N2O production was increased compared with the control soil over the entire experimental period in the glucose-amended soils but only after 48 h in the xylan-amended soils and not until 168 h in the cellulose-treated soils. The CO2:N2O ratio was consistently higher than the theoretical value of 2, suggesting that denitrification and CO2 production via fermentation occurred simultaneously. Moreover, this ratio was highly correlated with the Eh values. We conclude that more research is needed to explain the role of soil redox intensity (Eh) and capacity (quantity of redox species undergoing reduction) in the expression of soil denitrification-fermentation pathways.  相似文献   

5.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

6.
The influence of several carbon sources on heterotrophic N2 fixation in four paddy soils under flooded and nonflooded conditions was investigated by 15N-tracer technique. Greater N2 fixation occurred in submerged soils amended with cellulose and rice straw, the former being superior. Addition of sucrose, glucose and malate in that order stimulated N2 fixation in submerged alluvial soil, while sucrose alone enhanced N3 fixation in laterite soil. In submerged acid soils none of these C sources stimulated N2 fixation. Nonflooded conditions favoured N2 fixation in alluvial and acid saline soils amended with cellulose, sucrose and glucose.  相似文献   

7.
Biochar application to arable soils could be effective for soil C sequestration and mitigation of greenhouse gas (GHG) emissions. Soil microorganisms and fauna are the major contributors to GHG emissions from soil, but their interactions with biochar are poorly understood. We investigated the effects of biochar and its interaction with earthworms on soil microbial activity, abundance, and community composition in an incubation experiment with an arable soil with and without N-rich litter addition. After 37 days of incubation, biochar significantly reduced CO2 (up to 43 %) and N2O (up to 42 %), as well as NH4 +-N and NO3 ?-N concentrations, compared to the control soils. Concurrently, in the treatments with litter, biochar increased microbial biomass and the soil microbial community composition shifted to higher fungal-to-bacterial ratios. Without litter, all microbial groups were positively affected by biochar × earthworm interactions suggesting better living conditions for soil microorganisms in biochar-containing cast aggregates after the earthworm gut passage. However, assimilation of biochar-C by earthworms was negligible, indicating no direct benefit for the earthworms from biochar uptake. Biochar strongly reduced the metabolic quotient qCO2 and suppressed the degradation of native SOC, resulting in large negative priming effects (up to 68 %). We conclude that the biochar amendment altered microbial activity, abundance, and community composition, inducing a more efficient microbial community with reduced emissions of CO2 and N2O. Earthworms affected soil microorganisms only in the presence of biochar, highlighting the need for further research on the interactions of biochar with soil fauna.  相似文献   

8.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

9.
The availability of labile organic C for microbial metabolic processes could be an important factor regulating N2O emissions from tropical soils. We explored the effects of labile C on the emissions of N2O from a forest soil in the State of Rondônia in the southwestern quadrant of the Brazilian Amazon. We measured emissions of N2O from a forest soil after amendments with solutions containing glucose, water only or NO3. Addition of glucose to the forest soil resulted in very large increases in N2O emissions whereas the water only and NO3 additions did not. These results suggest a strong C limitation on N2O production in this forest soil in the southwestern Amazon.  相似文献   

10.
Agricultural soils contribute significantly to atmospheric nitrous oxide (N2O). A considerable part of the annual N2O emission may occur during the cold season, possibly supported by high product ratios in denitrification (N2O/(N2+N2O)) and nitrification (N2O-N/(NO3-N+NO2-N)) at low temperatures and/or in response to freeze-thaw perturbation. Water-soluble organic materials released from frost-sensitive catch crops and green manure may further increase winter emissions. We conducted short-term laboratory incubations under standardized moisture and oxygen (O2) conditions, using nitrogen (N) tracers (15N) to determine process rates and sources of emitted N2O after freeze-thaw treatment of soil or after addition of freeze-thaw extract from clover. Soil respiration and N2O production was stimulated by freeze-thaw or addition of plant extract. The N2O emission response was inversely related to O2 concentration, indicating denitrification as the quantitatively prevailing process. Denitrification product ratios in the two studied soils (pH 4.5 and 7.0) remained largely unaltered by freeze-thaw or freeze-thaw-released plant material, refuting the hypothesis that high winter emissions are due to frost damage of N2O reductase activity. Nitrification rates estimated by nitrate (NO3) pool enrichment were 1.5-1.8 μg NO3-N g−1 dw soil d−1 in freeze-thaw-treated soil when incubated at O2 concentrations above 2.3 vol% and one order of magnitude lower at 0.8 vol% O2. Thus, the experiments captured a situation with severely O2-limited nitrification. As expected, the O2 stress at 0.8 vol% resulted in a high nitrification product ratio (0.3 g g−1). Despite this high product ratio, only 4.4% of the measured N2O accumulation originated from nitrification, reaffirming that denitrification was the main N2O source at the various tested O2 concentrations in freeze-thaw-affected soil. N2O emission response to both freeze-thaw and plant extract addition appeared strongly linked to stimulation of carbon (C) respiration, suggesting that freeze-thaw-induced release of decomposable organic C was the major driving force for N2O emissions in our soils, both by fuelling denitrifiers and by depleting O2. The soluble C (applied as plant extract) necessary to induce a CO2 and N2O production rate comparable with that of freeze-thaw was 20-30 μg C g−1 soil dw. This is in the range of estimates for over-winter soluble C loss from catch crops and green manure plots reported in the literature. Thus, freeze-thaw-released organic C from plants may play a significant role in freeze-thaw-related N2O emissions.  相似文献   

11.
The composition of the microflora, N2-fixing bacteria particularly, in different soils cultivated with wheat in Egypt was investigated in some samples collected from the fields after applying the agricultural practices recommended for wheat cultivation and just before sowing. The influence of carbon sources, mineral nitrogen and water regimes on potential dinitrogen fixation (acetylene reduction assay) in soils was investigated. The bacterial population densities including-N2-fixing organisms were related to a number of environmental factors such as organic matter content. Among diazotrophs, Azotobacter spp. and Azospirillum spp. were encountered in higher densities in comparison with clostridia. Unamended soils showed a lower acetylene-reducing activity (0.5–61.5 nmoles C2H4 g?1 h?1). Addition of glucose (1% w/w) greatly enhanced such activity being the highest (86.9–2846.5 nmoles C2H4 g?1 h?1) in the clay soil with the highest organic carbon content (1.42%). Glucose amendment had no significant influence on acetylene reduction in the saline soil. N2-fixation in barley straw-amended (1%) soils was not much higher than in unamended soils. Concentrations of up to 70 ppm ammonium-nitrogen depressed N2-fixation in soils that received barley straw. Acetylene reduction in submerged soil increased after addition of cellulose. Non-flooded conditions favoured N2-fixation in the fertile clay soil amended with sucrose.  相似文献   

12.
Soil communities dominated by fungi such as those of no-tillage (NT) agroecosystems are often associated with greater soil organic matter (SOM) storage. This has been attributed in part to fungi having a higher growth yield efficiency (GYE) compared to bacteria. That is, for each unit of substrate C utilized, fungi invest a greater proportion into biomass and metabolite production than do bacteria. The assumption of higher fungal efficiency may be unfounded because results from studies in which fungal and bacterial efficiencies have been characterized are equivocal and because few studies have measured microbial GYE directly. In this study, we measured microbial GYE in agricultural soils by following 13C-labeled glucose loss, total CO2-C, and 13CO2-C evolution at 2 h intervals for 20 h in two experiments (differing in N amendment levels) in which the fungal:bacterial biomass ratios (F:B) were manipulated. No differences in efficiency were observed for communities with high versus low F:B in soils with or without added inorganic N. When calculated using 13CO2-C (in contrast to total CO2-C) evolution, growth yield efficiencies of soils having high and low F:B were 0.69±0.01 and 0.70±0.01, respectively. When soils were amended with N, soils with high and low F:B had growth yield efficiencies of 0.78±0.01 and 0.76±0.01, respectively. Our experiments do not support the widely held assumption that soil fungi have greater growth efficiency than soil bacteria. Thus, claims of greater fungal efficiency may be unsubstantiated and should be evoked cautiously when explaining the mechanisms underlying greater C storage and slower C turnover in fungal-dominated soils.  相似文献   

13.
Bacteria are considered as playing a predominant role in the production of nitrous oxide (N2O) in arable soil. Despite the knowledge that fungi are able to denitrify their contribution to denitrifier N2O production from arable soil is uncertain. Here, we assess the capability of fungi and bacteria to contribute to N2O emission from arable soil by measuring potential denitrification rates (PDR) as N2O production, after application of selective inhibitors aimed at distinguishing between fungal and bacterial denitrification, and related PDR to characteristics of the soil microbial community. Soil was sampled from a long-term crop rotation maintained since 1961 at seven different pH levels, ranging in 0.5 increments from pH 4.5 to 7.5, and along a cultivation gradient from freshly ploughed soil to three years under ley grass. Over both pH and cultivation gradients, bacteria contributed up to 54% and fungi contributed to 18% of the PDR. Residual N2O production that was not targeted by the selective inhibitors and hence could not be attributed to fungi or bacteria might be due to pre-synthesised enzymes or resistant organisms. The PDR of the bacterial community responded positively to increase in soil pH with the lowest PDR at pH 4.2 and the highest around pH 5.9. In contrast, fungal denitrification was not influenced by soil pH. Changes in ester linked fatty acids (ELFA) concentrations showed that whilst total bacterial biomass decreased with increasing pH fungal biomass was not significantly influenced by pH, driving an increase in the ratio of fungal–bacterial biomass. Both fungal biomass and bacterial biomass, and the PDR from the control treatment (no inhibitor application) across the pH gradient were greatest under long-term ley. Concentrations of fatty acids a15:0, 16:1ω7 and 17:1ω8 of microbial origin were positively correlated with the proportion of denitrification activity that was repressed by bacterial inhibitors. This suggests that there is a relationship between organisms that possess the fatty acids a15:0, 16:1ω7 and 17:1ω8, and the function of denitrification. Our results demonstrate that both fungal and bacterial denitrification were occurring in this arable soil. That management for pH and cultivation had differing effects on the potential contribution of fungal and bacterial denitrification to N2O production has implications for the development of appropriate management practices for mitigation of this greenhouse gas.  相似文献   

14.
Nitrous oxide (N2O) dynamics during denitrification, including N2O production and reduction, particularly as related to soil depth, are poorly understood. The objective of this study was to investigate the rates of N2O production and reduction processes at various soil depths along a hydrological gradient in grazed subtropical grasslands. A batch incubation study was conducted on soils collected along a hydrological gradient representing isolated wetland (Center), transient edge (Edge) and pasture upland (Upland) in south-central Florida. Significantly different N2O production and reduction rates between hydrological zones were observed for surface soils (0–10 cm) under ambient conditions, with average N2O production rates of 0.368, 0.178 and 0.003 N2O-N kg−1 dry soil h−1 for Center, Edge and Upland, respectively, and average N2O reduction rates of 0.063, 0.132 and 0.002 N2O-N kg−1 dry soil h−1. Nitrous oxide production and reduction in subsurface soils maintained low rates and showed small variations between depths and hydrological zones. Our results suggest that N2O dynamics were affected by depth, mainly through labile organic carbon (C) and microbial biomass C, being influenced by hydrological zone primarily through soil NO3- content. The spatial distribution of N2O fluxes from denitrification along the hydrological gradient is likely attributed to the differences in N2O production and reduction in surface soils.  相似文献   

15.
Nitrous oxide emissions from a sandy-loam textured soil wetted to matric potentials of either-1.0 or-0.1 kPa were determined in laboratory experiments in which the soil was incubated in air (control), air plus 10 Pa C2H2 (to inhibit nitrification), 100 kPa O2 (to suppress denitrification), 10 kPa C2H2 (to inhibit N2O reduction to N2 in denitrification) or following autoclaving. The total N2O production, consumption and net N2O emission from the soils together with the contributions to N2O emission from different processes of N2O production were estimated. The rate of N2O production was significantly greater in the wetter soil (282 pmol N2O g-1 soil h-1) than in the drier soil (192 pmol N2O g-1 soil h-1), but because N2O consumption by denitrifiers was also greater in the wetter soil, the net N2O emissions from the wetter and the drier soils did not differ significantly. Non-biological sources made no significant contribution to N2O emission under either moisture regime and biological processes other than denitrification and nitrification made only a small contribution (1% of the total N2O production) in the wetter soil. Denitrifying nitrifiers were the predominant source of N2O emitted from the drier soil and other (non-nitrifying) denitrifiers were the predominant source of N2O emitted from the wetter soil.  相似文献   

16.
Nitrous oxide (N2O) is a greenhouse gas produced during microbial transformation of soil N that has been implicated in global climate warming. Nitrous oxide efflux from N fertilized soils has been modeled using NO3 content with a limited success, but predicting N2O production in non-fertilized soils has proven to be much more complex. The present study investigates the contribution of soil amino acid (AA) mineralization to N2O flux from semi-arid soils. In laboratory incubations (−34 kPa moisture potential), soil mineralization of eleven AAs (100 μg AA-N g−1 soil) promoted a wide range in the production of N2O (156.0±79.3 ng N2O-N g−1 soil) during 12 d incubations. Comparison of the δ13C content (‰) of the individual AAs and the δ13C signature of the respired AA-CO2-C determined that, with the exception of TYR, all of the AAs were completely mineralized during incubations, allowing for the calculation of a N2O-N conversion rate from each AA. Next, soils from three different semi-arid vegetation ecosystems with a wide range in total N content were incubated and monitored for CO2 and N2O efflux. A model utilizing CO2 respired from the three soils as a measure of organic matter C mineralization, a preincubation soil AA composition of each soil, and the N2O-N conversion rate from the AA incubations effectively predicted the range of N2O production by all three soils. Nitrous oxide flux did not correspond to factors shown to influence anaerobic denitrification, including soil NO3 contents, soil moisture, oxygen consumption, and CO2 respiration, suggesting that nitrification and aerobic nitrifier denitrification could be contributing to N2O production in these soils. Results indicate that quantification of AA mineralization may be useful for predicting N2O production in soils.  相似文献   

17.
An incubation experiment was carried out to investigate the interactions of two straw qualities differing in N content and two soils differently accustomed to straw additions. One soil under conventional farming management (CFM) regularly received straw, the other soil under organic farming management (OFM) only farmyard manure. The soils of the two sites were similar in texture, pH, cation‐exchange capacity, and glucosamine content. The soil from the OFM site had higher contents of organic C, total N, muramic acid, microbial biomass C and N (Cmic and Nmic), but a lower ergosterol content and lower ratios ergosterol to Cmic and fungal C to bacterial C. The straw from the CFM had threefold higher contents of total N, twofold higher contents of ergosterol and glucosamine, a 50% higher content of muramic acid, and a 30% higher fungal C–to–bacterial C ratio. The straw amendments led to significant net increases in Cmic, Nmic, and ergosterol. Microbial biomass C showed on average a 50% higher net increase in the organic than in the CFM soil. In contrast, the net increases in Nmic and ergosterol differed only slightly between the two soils after straw amendment. The CO2 evolution from the CFM soil always exceeded that from the OFM, by 50% or 200 µg (g soil)–1 in the nonamended control soil and by 55% or additional 600 µg (g soil)–1 in the two straw treatments. In both soils, 180 µg g–1 less was evolved as CO2‐C from the OFM straw. The metabolic quotient qCO2 was nearly twice as high in the control and in the straw treatments of the CFM soil compared with that of the OFM. In contrast, the difference in qCO2 was insignificant between the two straw qualities. Differences in the fungal‐community structure may explain to a large extent the difference in the microbial use of straw in the two soils under different managements.  相似文献   

18.
Land-use type and nitrogen (N) addition strongly affect nitrous oxide (N2O) and carbon dioxide (CO2) production, but the impacts of their interaction and the controlling factors remain unclear. The aim of this study was to evaluate the effect of both factors simultaneously on N2O and CO2 production and associated soil chemical and biological properties. Surface soils (0–10 cm) from three adjacent lands (apple orchard, grassland and deciduous forest) in central Japan were selected and incubated aerobically for 12 weeks with addition of 0, 30 or 150 kg N ha–1 yr–1. Land-use type had a significant (p < 0.001) impact on the cumulative N2O and CO2 production. Soils from the apple orchard had higher N2O and CO2 production potentials than those from the grassland and forest soils. Soil net N mineralization rate had a positive correlation with both soil N2O and CO2 production rates. Furthermore, the N2O production rate was positively correlated with the CO2 production rate. In the soils with no N addition, the dominant soil properties influencing N2O production were found to be the ammonium-N content and the ratio of soil microbial biomass carbon to nitrogen (MBC/MBN), while those for CO2 production were the content of nitrate-N and soluble organic carbon. N2O production increased with the increase in added N doses for the three land-use types and depended on the status of the initial soil available N. The effect of N addition on CO2 production varied with land use type; with the increase of N addition doses, it decreased for the apple orchard and forest soils but increased for the grassland soils. This difference might be due to the differences in microbial flora as indicated by the MBC/MBN ratio. Soil N mineralization was the major process controlling N2O and CO2 production in the examined soils under aerobic incubation conditions.  相似文献   

19.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

20.

Purpose

The effects of soil pH manipulation and KCl addition on N2O production in adjacent forest and grassland soils in central Alberta were studied in a 16-day laboratory incubation experiment.

Materials and methods

The soils were subjected to four pH and two salt treatments: CK (control)—no addition of acid or alkali solution (pH 4.50 and 4.48 for the forest and grassland soils, respectively; same below); HCl—addition of HCl solution to lower soil pH (3.95 and 3.75); L-KOH and H-KOH—addition of 6 mL of 0.2 (5.36 and 5.57) and 0.4 (6.41 and 6.72)?mol?L?1 KOH solution, respectively, to increase soil pH to two different levels. In order to differentiate between the effect of a change in pH and of changed salt concentrations on N2O production, 6 mL of 0.2 (L-KCl) (4.56 and 4.41) or 0.4 mol?L?1 (H-KCl) (4.59 and 4.42) KCl solutions were also applied as treatments to create two levels of salt application rates.

Results and discussion

Increasing pH promoted gross nitrification and cumulative N2O production in both soils, particularly in the forest soil. However, cumulative N2O production decreased in the forest soil but increased in the grassland soil when pH decreased. Cumulative N2O production in the grassland soil was 36 times higher in the L-KCl treatment (1,442 μg?N?kg?1) than in the CK (40 μg?N?kg?1), whereas the H-KCl treatment reduced cumulative N2O production. In contrast, in the forest soil, both KCl treatments reduced cumulative N2O production.

Conclusions

(1) The most important factor to increase N2O production in this study was increasing soil pH, suggesting that careful soil pH management could be used as a tool to control soil N2O production; (2) salt effect was also involved in affecting N2O production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号