首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
利用异位生物絮团反应器,分别在有机碳源存在(第Ⅰ阶段,持续21 d)和有机碳源缺失(第Ⅱ阶段,持续21 d)阶段,比较研究了无机碳源(NaHCO_3)浓度为0.0 (对照组),0.5,1.0和1.5 g/L的模拟养殖废水对反应器生物絮团降氮及沉降性能的影响。结果显示,第Ⅰ阶段对照组出水氨氮浓度显著高于其他处理组,但总体上呈先下降后稳定的趋势,各组亚硝态氮和硝态氮均有少量积累;生物絮团生物量及沉降速度对照组显著低于处理组,处理组之间差异不显著。第Ⅱ阶段各组出水的氨氮、亚硝态氮浓度无显著差异,对照组硝态氮浓度高于各处理组,氨氮浓度迅速下降;此阶段生物絮团的生物量、沉降速度有所下降,NaHCO_3浓度为1.0 g/L处理组表现出较好的沉降效果;粒径分布也趋向均匀。整个实验阶段,不同浓度无机碳源处理条件下,氨氮的去除效率均达到97.8%以上,亚硝态氮无显著积累,处理组生物絮团沉降速度和生物量显著高于对照组。研究表明,添加无机碳源可提高生物絮团降氮性能,增强其沉降速度;移除有机碳源后,生物絮团反应器可维持氨氮去除能力,但引起硝态氮积累,生物絮团生物量减少;有机碳源缺失时,无机碳源(≥0.5 g/L)有助于生物絮团反应器保持其氨氮去除能力。  相似文献   

2.
使用悬浮式生物反应器(suspendedgrowthreactor,SGRs)研究了生物絮团粒径对絮团的硝化氨氮能力和同化氨氮能力的影响。硝化作用条件下,未分筛组、粒径大于等于50μm的絮团组(≥50μm组)和粒径小于50μm的絮团组(50μm组)总氨氮(total ammonia nitrogen, TAN)去除速率分别为(1.33±0.01) mg TAN/(g TSS·h)、(1.62±0.04) mg TAN/(g TSS·h)和(1.64±0.06) mg TAN/(g TSS·h);同化作用条件下,三组的TAN去除速率分别为(2.83±0.08) mg TAN/(g TSS·h)、(3.34±0.12) mg TAN/(g TSS·h)和(3.52±0.12) mg TAN/(g TSS·h)。≥50μm组与50μm组的TAN去除速率、亚硝态氮(NO_2~–-N)、硝态氮(NO_3~–-N)和总氮(total nitrogen, TN)的最终浓度差异均不显著(P0.05)。检测了溶解性有机碳(dissolved organic carbon, DOC)、粗蛋白(crude protein)、总脂肪(crude fat)、氨基酸(amino acid)、脂肪酸(fatty acids)、粗灰分(crude ash)、碳氮比(carbon to nitrogen ratio, C/N)、挥发性悬浮固体(volatile suspended solids, VSS)和活性污泥比好氧速率(specific oxygen uptake rate, SOUR)等指标,比较结果表明,絮团粒径对硝化氨氮、同化氨氮效率没有显著影响,对絮团的营养价值有显著影响。  相似文献   

3.
通过高通量测序分析生物絮团系统在氮转化过程中的水体菌群多样性变化。试验设置对照组和试验组,对照组水体为清洁的消毒海水,试验组为生物絮团组,试验周期30 d。结果显示:试验组氨氮在第5天达到最大质量浓度(2.99 mg/L),此后降低至趋于0 mg/L;对照组在第9天达到最大质量浓度(7.51 mg/L),之后降低至趋于0 mg/L。试验组亚硝酸盐氮在第17天达到最大质量浓度(12.54 mg/L),之后降低至趋于0 mg/L;对照组在试验周期内呈不断升高的趋势,在第30天达到13.42 mg/L。试验组的硝酸盐氮质量浓度高于对照组,在第30天两组分别达到19.56和6.31 mg/L。生物絮团系统具有明显的消除氨氮和亚硝酸盐氮的能力,试验组的氮转化速率快于对照组。高通量测序显示,生物絮团系统微生物的菌群丰度和多样性指数随养殖周期的增加均显著增加,不同时期差异显著。试验共鉴定出23个门549个属,在门水平上,变形菌门(Proteobacteria)相对丰度随时间增加而降低(从67.72%降至44.45%),拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi)随时间增加而增加(分别从5.99%和6.68%增至16.06%和19.02%)。与氮转化有关的主要的菌有Ardenscatena和Nitrospiraceae(硝化螺旋菌),相对丰度随时间增加而增加(分别从0.34%和0.07%增加至12.69%和0.2%)。生物絮团系统的功能与微生物多样性在养殖周期中呈显著变化。本研究对提高生物絮团系统养殖模式的利用效率具有参考价值。  相似文献   

4.
本实验以非生物絮团养殖模式作为对照,研究了生物絮团凡纳滨对虾养殖模式中,水质因子氨氮和亚硝酸氮的变化规律。结果表明:试验组的生物絮团沉积量至第35天达到峰值(15.93±0.31)m L/L,而后保持相对稳定状态,对照组的生物絮团量一直处于极低水平(1.5 m L/L),两组之间差异显著(P0.05);对照组氨氮含量至第35天达到峰值(1.05±0.19)mg/L,试验组氨氮含量增加缓慢,至第60天时仅为(0.37±0.04)mg/L,显著低于对照组(P0.05);在实验的前15天,实验组和对照组的亚硝酸氮含量无显著差异(P0.05),随后试验组亚硝酸氮含量增速减慢并趋于稳定,而对照组则直线上升,对照组亚硝酸氮含量显著高于试验组(P0.05)。  相似文献   

5.
将从循环水养殖系统中收集的新吉富罗非鱼粪便,置于异位式生物絮凝反应器中,用显微镜和扫描电镜观察了粪便转化为絮体过程中结构变化,并测定了粗蛋白、氨基酸、胞外聚合物的变化。粪便在转化过程中结构变疏松,直至最终发展成以丝状菌为骨架的生物絮体。随着粪便的分解,自第4 d开始,反应器中氨氮含量开始缓慢上升,第7 d达到峰值7.46 mg/L,亚硝态氮也随之升至7.81 mg/L,并且硝态氮也开始快速增至21.6 mg/L。絮体粗蛋白含量在第9 d达到最高值(26.37%),总氨基酸在第7 d达到最高值20.44%。絮体中的总氨基酸含量虽比粪便高,但比饲料中总氨基酸33.16%低。絮体疏松结合的胞外聚合物的主要成分是多糖,而紧密结合的胞外聚合物中蛋白质是其主要成分。  相似文献   

6.
为探究不同浓度硫酸新霉素对于生物絮团处理氨氮及抗生素抗性基因的影响,本实验对生物絮团水质及絮团指标、水体中抗生素含量和生物絮团中6种抗生素抗性基因的含量进行了检测。结果显示:在氨氮转化的速率上,初次加药连续监测显示未添加组(A组)、0.5 mg/L硫酸新霉素组(B组)、1 mg/L硫酸新霉素组(C组)和3 mg/L硫酸新霉素组(D组)的氨氮去除速率分别为(3.88±0.02) mg TAN/(g TSS·h)、(2.22±0.03) mg TAN/(g TSS·h)、(2.17±0.04) mg TAN/(g TSS·h)和(1.72±0.02) mg TAN/(g TSS·h),氨氮去除速率A组>B组>C组>D组。而间隔一个休药期(500℃·d)的第二次加药连续监测显示4个组的氨氮去除速率分别为(2.99±0.08) mg TAN/(g TSS·h)、(2.98±0.03) mg TAN/(g TSS·h)、(2.97±0.08) mg TAN/(g TSS·h)和(5.10±0.03) mg TAN/(g TSS·h),氨氮去除速率D组>A组>B组&g...  相似文献   

7.
采用中试规模的循环水养殖系统,对比研究碳源连续添加的微生物悬浮生长反应器(SGR-Con)和碳源分次添加反应器(SGR-Sev)的水处理效果。典型反应周期内的溶解性有机碳浓度变化,SGR-Con反应区处于较高的稳定水平,SGR-Sev在反应周期的第0小时至碳源瞬时添加时快速上升至SGR-Con的水平,并且在反应周期的第4小时以后降至较低的稳定水平。实验期间,SGR-Sev反应区和沉淀区的溶解氧含量分别显著高于SGRCon的反应区和沉淀区;2个反应器的反应区pH无显著差异,沉淀区pH在2个反应器之间亦无显著差异。碳源分次添加的方式显著提高了反应器的脱氮效果,SGR-Sev对硝氮和总氮的去除率、出水碱度分别可达63.91%±14.31%、64.07%±12.11%和(278.18±80.33)mg/L。相较于SGR-Con,SGR-Sev的出水总氨氮和亚硝氮浓度较高。反应器采用碳源分次添加的方式可使絮团具有良好的沉降性能。研究表明,微生物悬浮生长反应器宜采用碳源分次添加的方式。  相似文献   

8.
碳氮比(C/N)调控是生物絮团养殖的核心技术特征,相关研究和实践中C/N中的碳和氮有不同的表征形式,本研究用溶解有机碳(dissolved organic carbon, DOC)表征碳,分别用总氮(total nitrogen, TN)、溶解无机氮(dissolved inorganic nitrogen, DIN)、总氨氮(total ammonia nitrogen, TAN)表征氮,比较了相同C/N、不同氮素形式条件下生物絮团的氨氮去除能力、基本营养组分、氮代谢相关功能基因及总异养菌数量。实验设置A组DOC/TN为20, B组DOC/DIN为20, C组DOC/TAN为20。各实验组8 h内可将10 mg/L氨氮降低到1 mg/L以下, TAN去除速率分别为(2.11±0.05)mgTAN/gTSS·h、(2.00±0.02)mgTAN/gTSS·h和(2.09±0.02)mgTAN/gTSS·h,A组显著高于B组(P<0.05),C组与A、B组无显著差异。各组絮团粗蛋白含量无显著差异,C组絮团粗脂肪含量显著高于B组和A组(P<0.05),主要氨基酸和脂肪酸组分含量...  相似文献   

9.
为了筛选无乳链球菌敏感药物,对9种常用渔药抗生素进行了药物敏感试验,采用微量肉汤稀释法进行测定,通过加入阿尔玛蓝指示剂和革兰氏染色显微镜观察,得出各抗菌药物的最低抑菌浓度依次为:恩诺沙星0.3μg/mL,氟苯尼考0.3μg/mL,阿莫西林5.2μg/mL,诺氟沙星0.9μg/mL,强力霉素0.9μg/mL,庆大霉素13.0μg/mL,林可霉素17.6μg/mL,新霉素22.0μg/mL,磺胺嘧啶133.3μg/mL。结果表明,恩诺沙星和氟苯尼考对无乳链球菌最敏感,杀菌力最强;在试验过程中,阿尔玛蓝指示剂有助于抑菌结果的判断。  相似文献   

10.
利用自制的硝化细菌菌剂促进移动床生物膜反应器(Moving bed biofilm reactor,MBBR)的挂膜启动,分析不同载体氨氮负荷、碳氮比条件下反应器运行状况,并进一步进行了实验室模拟循环水养殖草金鱼实验。结果显示,利用自制硝化菌剂能够完成整个移动床反应器的启动过程,在接种15 d后使循环出水氨氮稳定在1 mg/L以下。单位体积载体氨氮负荷实验表明,MBBR能够在100 mg TAN/(L填料·d)条件下,使出水满足一般水产养殖水质要求(氨氮0.5 mg/L,亚硝氮0.1 mg/L)。进水碳氮比在1以内时MBBR能够稳定高效运行。在实验室模拟循环水养殖过程中,经菌剂强化的MBBR能维持循环出水氨氮低于0.5 mg/L,亚硝氮低于0.05 mg/L。  相似文献   

11.
从凡纳滨对虾(Litopenaeus vannamei)养殖水体中分离出具有高效氨氮及亚硝态氮去除功能的菌株Y2,生理生化和16SrRNA基因序列比对分析结果显示该菌株为麦氏交替单胞菌(Alteromonas macleodii)。进一步通过生长实验进行温度、酸碱度、盐度的培养条件优化,利用抗生素药敏实验筛选菌株特定抗性;通过卤虫浸泡感染的方法检测麦氏交替单胞菌Y2的安全性,并测定海水培养液OD_(600)及含氮无机污染物的浓度,探究菌株Y2生长与水体中氨氮、亚硝态氮、硝态氮之间的动态变化关系;通过28d对虾养殖试验,监测水质、生物絮团形成量、致病菌数量及对虾成活率生长速率,进一步阐明菌株在实际养殖中的功效。结果表明,该菌株Y2对苯唑西林、克林霉素有抗性;对卤虫的48 h半致死浓度高于1.9×10~8 cfu/mL,显著高于哈氏弧菌(10~2 cfu/mL)。此外,该菌具有持续去除水体中氨氮、亚硝态氮的功能。在养殖实验中能抑制潜在病原菌弧菌生长、提高对虾存活率及生长率,并且能在水体中稳定存活较长时间。综上所述,菌株Y2是养殖用益生菌制剂的优良备选菌株,可作为生物絮团养殖系统中调节水质的关键菌株。  相似文献   

12.
不同盐度对生物絮团、对虾生长以及酶活性的影响   总被引:1,自引:0,他引:1  
在不同盐度条件下进行凡纳滨对虾的生物絮团养殖试验,研究盐度对生物絮团养殖水质和对虾生长及其酶活性的影响。试验设5个盐度梯度(10、15、20、25、30),生物絮团初始量为20 mL/L,对虾密度为500尾/m^3,试验周期30 d。试验结果显示,15盐度组与20盐度组的对虾体质量增长率最大,达70.73%,10盐度组的体质量增长率最小,达50.24%。盐度越高生物絮团生长越快,30盐度组17 d生物絮团沉降量达200 mL/L,之后逐渐降至43 mL/L,其他组呈相同变化趋势。试验过程中水体总碱度与pH持续降低,但不同组间差异不显著(P>0.05)。盐度越高氨氮累积越快,30盐度组在第6 d达到最大质量浓度8.62 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。盐度越低亚硝态氮累积越快,10盐度组在第6 d达到最大质量浓度9.18 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。硝态氮在不同盐度中呈前期上升的趋势,第16 d之后开始缓慢下降。15盐度组的淀粉酶活性显著高于其他组(P<0.05),其他各组之间无显著差异(P>0.05)。脂肪酶在25盐度组活性最高,盐度升高或者降低酶活性均降低。在10、15、20盐度组中,超氧化物歧化酶、碱性磷酸酶、酸性磷酸酶活性均维持在较高水平,在相同盐度下,肌肉酶活性低于肝胰脏。  相似文献   

13.
采用模拟实验与现场实验相结合的方法,通过添加3种微生态制剂及碳水化合物作为碳源,研究了其在生物絮团形成与水质调节中的作用,并分析了其对水中无机氮含量、悬浮物、细菌总数及幼参生长的影响,为阐明生物絮团在刺参工厂化苗种培育中的生态环境调控作用提供依据。结果表明,亚硝态氮易于在培育池水体中累积,可高达0.25 mg/L;添加芽孢杆菌后,水中总悬浮物含量和细菌总数均为最高值,且未检测到弧菌和大肠菌群;第20天,仅添加蔗糖组幼参增重与特定生长率均明显高于其他复合碳源组和对照组(P0.05),分别为44.34 g和2.19%/d;而添加蔗糖和芽孢杆菌组增重与特定生长率均明显高于其他处理组和对照组(P0.05),分别为66.60 g和3.01%/d;复合碳源组幼参增重与特定生长率随着玉米淀粉含量增加而逐渐降低,但与对照差异均不显著(P0.05)。结果显示,以蔗糖为碳源,添加芽孢杆菌形成的生物絮团不仅可以改善水体水质和微生态结构,还可以明显促进幼参的生长。  相似文献   

14.
为研究絮团浓度对革胡子鲇零换水养殖效果的影响,在不额外添加有机碳源(只利用饲料中的碳)的革胡子鲇()养殖系统中,设置了平均絮团质量浓度为561.18 mg/L和780.41 mg/L两个处理组,比较了两实验组的水质、菌群结构、鱼生长及氮利用效率。结果表明,两种浓度絮团条件下,总氨氮(total ammonia nitrogen,TAN)和亚硝酸氮(NO2--N)能分别维持1.84 mg/L和1.79 mg/L以下。两处理组间pH、溶解氧(dissolved oxygen,DO)、TAN、NO2--N、氮素利用效率及主要生长指标无显著差异(-N)浓度(822.0 mg/L)明显高于低浓度絮团组(623.33 mg/L)。高通量测序分析菌群结构结果表明,两组间门水平的菌群组成种类及优势度无显著性差异(<0.05)。两处理组中的革胡子鲇存活率分别达到(91.11±1.53)%和(94.44±2.08)%,饲料系数为(1.41±0.18)和(1.27±0.26),特殊生长率为(2.13±0.04)%/d和(2.19±0.08)%/d,均无显著差异(>0.05)。两实验组饲料氮的利用率分别达到了72.17%和71.34%。综合以上结果认为,仅利用饲料中的碳既能维持革胡子鲇的零换水养殖且能取得较高的氮素利用效率,两种絮团浓度对革胡子鲇的生长无显著影响,高浓度絮团组中的硝化作用更明显。  相似文献   

15.
采用模拟实验与现场实验相结合的方法,通过添加3种微生态制剂及碳水化合物作为碳源,研究了其在生物絮团形成与水质调节中的作用,并分析了其对水中无机氮含量、悬浮物、细菌总数及幼参生长的影响,为阐明生物絮团在刺参工厂化苗种培育中的生态环境调控作用提供依据。结果表明,亚硝态氮易于在培育池水体中累积,可高达0.25 mg/L;添加芽孢杆菌后,水中总悬浮物含量和细菌总数均为最高值,且未检测到弧菌和大肠菌群;第20天,仅添加蔗糖组幼参增重与特定生长率均明显高于其他复合碳源组和对照组(P0.05),分别为44.34 g和2.19%/d;而添加蔗糖和芽孢杆菌组增重与特定生长率均明显高于其他处理组和对照组(P0.05),分别为66.60 g和3.01%/d;复合碳源组幼参增重与特定生长率随着玉米淀粉含量增加而逐渐降低,但与对照差异均不显著(P0.05)。结果显示,以蔗糖为碳源,添加芽孢杆菌形成的生物絮团不仅可以改善水体水质和微生态结构,还可以明显促进幼参的生长。  相似文献   

16.
不同生物絮团对脊尾白虾高密度养殖水体氨氮的影响   总被引:1,自引:0,他引:1  
为筛选适宜虾类工厂化养殖使用的生物絮团种类,以脊尾白虾(Exopalaemon carinicauda)为实验材料,探讨了3种不同产地(河南、福建、河北)来源的EM菌产生的生物絮团对脊尾白虾高密度养殖水体氨氮(ammonia nitrogen, AN)浓度的影响。每种生物絮团下共设置600尾/m~3、800尾/m~3、1 000尾/m~3共3个养殖密度,实验周期为8 d。结果显示,应用河南产地的EM菌,在600尾/m~3、800尾/m~3、1 000尾/m~3养殖密度下,水体最终氨氮浓度为1.28 mg/L、1.52 mg/L、1.90 mg/L,日均节水率为50.1%;应用福建产地的EM菌,水体最终氨氮浓度为1.03 mg/L、1.48 mg/L、2.15 mg/L,日均节水率为52.2%;应用河北产地的EM菌,水体最终氨氮浓度为1.58 mg/L、1.78 mg/L、2.74 mg/L,日均节水率为24.4%;而对照组水体最终氨氮浓度分别为1.62 mg/L、2.12 mg/L、3.05 mg/L,以上3种生物絮团在脊尾白虾高密度海水养殖中均有降低水体氨氮的作用,且效果存在显著差异,揭示水产养殖过程中应对适宜的EM菌试剂进行筛选后使用。实验筛选获得了适合脊尾白虾高密度养殖的生物絮团,为进一步开展其工厂化养殖及节水减排提供了参考。  相似文献   

17.
选取香溪河绿藻水华爆发时优势藻种—小球藻(Chlorella),经过分离纯化后作为实验原材料,分别检测了培养液中氨氮和硝氮的浓度,分析了小球藻对氨氮和硝氮吸收动力学特征以及不同氮素对其吸收速率的影响。实验表明,当氨氮浓度为11.62~2.97 mg/L,实验第2~3天时,小球藻氨氮去除效率不断加强,达到74.44%;当硝氮浓度为10.55~0.047 mg/L;实验第2~5天时,硝氮去除效率也不断加强,达到96.92%。无论是氨氮还是硝氮的培养条件下,小球藻在实验初始阶段都保持着较高的吸收速率,分别为1.44 mg/h和0.97 mg/h,随着培养介质中氮素浓度不断下降,其吸收速率也随之下降,其中用氨氮培养的小球藻在第3天达到最大吸收速率,为1.44 mg/h;用硝氮培养的小球藻在第4天达到最大吸收速率,为0.97 mg/h。小球藻对氨氮和硝氮的最大半饱和常数分别为2.85 mg/L和5.09 mg/L,表明单一氮源培养小球藻时,小球藻对氨氮更具有亲和力。实验结果为研究小球藻对氮素吸收速率从而控制小球藻生长提供理论依据,有助于通过调整、改变营养盐的输入通量及输入类型抑制小球藻繁殖,避免绿藻水华的发生。  相似文献   

18.
为探索不同微藻饵料对生物絮团育苗系统水质和凡纳滨对虾虾苗生长的影响,以钝顶螺旋藻(Spirulina platensis)(SP)和牟氏角毛藻(Chaetoceros muelleri Lemmerman)(CL)为植物饵料,分别在40 L养殖水体、水温29~30℃的条件下进行15 d的育苗对比试验。结果显示,SP组的铵态氮和亚硝态氮质量浓度分别在0.5 mg/L和0.4 mg/L以下,CL组分别在0.9 mg/L和1.9 mg/L以下;SP组和CL组的对虾出苗率分别为18.5%±0.2%和12.2%±0.5%,体质量分别为(0.309±0.032)mg和(0.258±0.017)mg。试验结果表明,以钝顶螺旋藻为植物饵料能有效降低育苗水体中铵态氮和亚硝态氮的质量浓度,维持良好的育苗水体环境,同时能提高出苗率,增加虾苗体质量(P0.05);在育苗系统中以钝顶螺旋藻或以牟氏角毛藻为植物饵料均能促进生物絮团对弧菌繁殖的抑制作用。  相似文献   

19.
分别向凡纳滨对虾(Litopenaeus vannamei)养殖水体中添加芽孢杆菌(处理A)、芽孢杆菌+粉碎甘蔗渣(处理B)、芽孢杆菌+粉碎-蒸煮甘蔗渣(处理c),检测养殖环境中的氨氮、亚硝态氮和硝态氮含量、水体中总菌数、水体中絮团含量和对虾生长指标,评估添加甘蔗渣和芽孢杆菌对对虾生长及养殖环境的影响。60天的养殖结果表明,养殖前期处理组B、处理组c的氨氮(TAN)浓度显著低于处理组A(P〈0.05);甘蔗渣和芽孢杆菌的添加能够提高水体中生物絮团含量,养殖10天以后,处理组B和处理组C的生物絮团含量分别维持在6-3~20 ml/L、8.3~30 ml/L,各时期都显著高于处理组A(维持在2.7~8.3 ml/L)(P〈0.05);处理组B、处理组c收获时对虾平均体重分别为8.56±0.21 g、8.84±0.26 g,显著大于处理组A(7.66±0.40 g)(P〈0.05)。  相似文献   

20.
研究了不同浓度蛭弧菌在西施舌幼虫培养中的应用,在温度26~27℃,以人工授精发育的西施舌幼虫为材料,测定水中氨氮、亚硝态氮浓度和pH值,并计算幼虫的生长速率以及成活率,与对照组进行比较,实验表明,氨氮浓度最多比对照组降低34%(P<0.05),亚硝态氮浓度最多降低25%(P<0.05)。结果表明,蛭弧菌100mg/L为最适浓度,在一定程度上降低水中氨氮和亚硝态氮浓度,并促进西施舌壳顶幼虫的生长,其生长速率高于对照组22%,成活率高于对照组13%,差异显著(P<0.05),但对pH值影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号