首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究长麦穗鱼(Pseudorasbora elongata)的遗传多样性现状,本研究利用线粒体Cyt b基因和D-loop区序列,分析了长江中下游安徽境内皖南山区的闪里(SL)、历口(LK)和石台(ST) 3个长麦穗鱼群体的遗传多样性及遗传结构。结果显示,基于Cyt b和D-loop序列定义的单倍型数分别为18和27,整体单倍型多样性指数(Hd)和核苷酸多样性指数(π)分别为0.792和0.01332、0.777和0.01140,2个标记均显示ST群体遗传多样性相对最低;群体间的遗传距离为0.00173~0.03615 (Cyt b)、0.00193~0.02639 (D-loop);遗传分化指数(Fst)和基因流(Nm)均表明ST群体和SL及LK群体间存在显著的遗传分化;分子方差分析(AMOVA)表明,长麦穗鱼群体间的遗传变异(94.60%、90.69%)远高于群体内(5.40%、9.31%),遗传变异主要来自群体间;单倍型系统进化树及网络结构图分析显示,SL和LK群体遗传关系较近,聚为一支,而ST群体单独聚为一支,...  相似文献   

2.
为了解中国长棘银鲈(Gerres filamentosus)的遗传背景以更好地保护与开发利用种质资源,测定了南海北部7个群体线粒体COⅠ基因5′端序列,以分析其遗传多样性和遗传结构。结果发现,176尾长棘银鲈652 bp序列中有25个单倍型,155个变异位点。7个群体整体呈现较高的单倍型多样性(H_d=0.767±0.018)与较低的核苷酸多样性(π=0.055 0±0.003 7)。就遗传多样性指数而言,碣石群体(H_d=0.606±0.092,π=0.059 2±0.006 6)最高,次高为阳江群体(H_d=0.323±0.102,π=0.027 0±0.010 7);琼海群体(H_d=0.560±0.125,π=0.001 0±0.000 3)最低,次低为陵水群体(H_d=0.685±0.077,π=0.001 5±0.000 3)。群体遗传分化系数F_(st)显示,碣石、阳江群体与其他群体间存在高度(极显著)的遗传分化(F_(st)=0.517 1~0.851 4,P<0.001),这2个群体间有低等程度(显著)的遗传分化(F_(st)=0.111 1<0.15,P<0.05),而其他群体间无明显分化(F_(st)=-0.025 5~0.008 8,P>0.05)。AMOVA分析显示,群体变异主要来源于群体内个体间(61.69%~74.13%),但群组间仍有较多变异(19.06%~37.92%);原因可能与历史上琼州海峡的阻碍、当代复杂的海流以及长棘银鲈只进行短距离洄游等生态特性有关。中性检验显示,海南陵水、东方和新盈群体在晚更新世时期发生过种群扩张,但南海长棘银鲈总体未呈现种群扩张现象,可能是不同谱系的叠加造成整体核苷酸不配对分析图呈现多峰。碣石和阳江群体与其他群体间有高度的遗传分化,可将它们作为一个独立的管理保护单位,其中碣石群体遗传多样性最高,应重点保护;其他群体可作为另一管理保护单位,其中琼海和陵水群体遗传多样性较低,建议及时采取保护措施,避免遗传多样性过度下降而导致资源枯竭。  相似文献   

3.
测定了中国华南6水系及澜沧江(云南勐腊)-湄公河流域(柬埔寨洞里萨湖)的125尾攀鲈(Anabas testudineus)线粒体部分ND2基因1 010 bp序列,分析发现39个变异位点和12个单倍型,总遗传多样性较低(h=0.369,π=0.003 8),推测可能经历过严重的瓶颈效应;中国攀鲈群体遗传多样性更低(h=0.282,π=0.000 4),处于边缘区的中国攀鲈群体是造成低遗传多样性的主要原因。在单倍型网络图中柬埔寨和中国攀鲈各自聚类,具有明显地理结构和谱系结构,推测地质运动和气候变化导致基因交流受阻所致。核苷酸错配图和中性检验表明中国群体经历过种群扩张,时间约为(5.94~4.13)万年前。华南水系群体间基因交流通畅,不存在明显分化;但与云南澜沧江群体间分化大而显著(FST=0.775,P0.01),AMOVA分析显示变异主要来自组群间(77.41%),推测二者分化时间约为(4.0~2.8)万年前,云南群体受末次冰期的影响,基因交流受阻而出现分化。中国群体和柬埔寨群体可作为2个管理单位进行保护;就中国群体而言,韩江水系群体遗传多样性最高,建议优先保护;澜沧江与华南水系间群体分化显著且遗传多样性极低,建议对澜沧江水系群体进行保护,以避免种质资源灭绝。  相似文献   

4.
为掌握江苏省重要湖泊湖鲚(Coilia nasus taihuensis)群体的遗传多样性和遗传结构,利用线粒体控制区(D-loop)全序列分析了6个湖泊(太湖、滆湖、高邮湖、白马湖、洪泽湖和骆马湖)湖鲚野生群体的遗传多样性水平和群体分化情况。结果表明,6个群体共214尾样本的D-loop序列中,共发现103个变异位点,92种单倍型。6个群体的单倍型多样性为0.726~0.951,核苷酸多样性为0.00552~0.01036,6个群体整体的单倍型和核苷酸多样性分别为0.857和0.00729,表明湖鲚群体的遗传多样性较高,且符合高单倍型多样性和低核苷酸多样性特点。分子方差分析(AMOVA)结果表明,群体间变异百分比为6.20%,群体内变异百分比为93.80%,说明遗传变异主要来自群体内部。群体总的遗传分化系数(Fst)为0.06199(P<0.01),两两群体间的Fst显示,滆湖群体与其他群体间存在极显著的遗传分化(P<0.001),而其他群体间无显著分化(P>0.05)。单倍型分子系统进化树和网络进化图显示,6个群体的单倍型形成了2个谱系,但谱系组成与群体地理分布无相关性。中性检验分析结果显示,湖鲚群体进化过程中经历过种群扩张,扩张时间大约发生在0.089~0.160百万年前。研究结果表明,湖鲚群体具有较高的遗传多样性,滆湖群体与其他群体具有极显著的遗传分化,且拥有多个独享单倍型,应将滆湖群体单独作为一个管理单位,其他5个群体作为一个整体进行管理和利用。  相似文献   

5.
本研究采用线粒体COI序列为分子标记,探究了长江、淮河下游8个湖泊鲢(Hypophthalmichthys molitrix)群体的遗传多样性和遗传结构。通过PCR和测序技术,获得鲢COI基因序列片段。分析结果显示:COI序列片段长度为630 bp, 243条COI序列共检出23个变异位点,定义14种单倍型,平均单倍型多样性(Hd)和核苷酸多样性(Pi)分别为0.692和0.005 12。8个群体的单倍型多样性为0.508~0.803,核苷酸多样性为0.002 41~0.006 94,表明鲢群体的遗传多样性有较大差异。分子方差分析结果显示,遗传变异主要来自于群体内,遗传分化指数(FST)为0.008 3,表明群体间没有显著遗传分化。系统发育树和网络结构图显示,单倍型分化为2个分支,但群体没有形成特定的地理遗传结构。中性检验结果和歧点分布曲线表明,鲢群体没有显著偏离中性选择,群体大小保持相对稳定。  相似文献   

6.
对中国东南沿海福建平潭和广东汕头、闸坡3个群体38 ind三线矶鲈(Parapristipoma trilineatus)线粒体控制区的914 bp序列进行分析,发现22个变异位点,共有33个单倍型。3个群体总体的单倍型多样性和核苷酸多样性均较高(H=0.991 0±0.009,π=0.005 8±0.000 4),其中平潭和汕头群体分别表现出最低和最高的核苷酸多样性(π=0.004 9±0.000 5和0.006 6±0.000 9)。3个群体间的Fst值为0.056 6~0.105 3,Nm值为4.248 3~8.333 4,表明3个群体间存在较低分化,可作为1个管理单位进行保护,建议优先保护汕头群体。在简约性网络图中单倍型呈星状分布,中性检验Fu’s Fs为显著负值和核苷酸不配对分析呈现单峰分布,表明三线矶鲈在历史上经历过种群扩张事件,推测扩张年代约为晚更新世的9.81~2.45万年前。  相似文献   

7.
鲢(Hypophthalmichthys molitrix)是长江、淮河下游湖泊中重要的渔业资源。为了解湖泊鲢种质资源遗传状况,采用线粒体Cyt b基因序列作为分子标记,对江淮下游8个湖泊(太湖、滆湖、长荡湖、淀山湖、高邮湖、洪泽湖、骆马湖、金沙湖)群体的239尾鲢进行扩增和测序。结果显示,鲢Cty b基因全长为1 141 bp, 239条Cyt b序列检出74个变异位点,定义24种单倍型,平均单倍型多样性和核苷酸多样性分别为0.697和0.010 12。太湖群体的单倍型多样性和核苷酸多样性最高,分别为0.830和0.015 84,长荡湖群体的单倍型多样性和核苷酸多样性最低,分别为0.379和0.003 98。8个鲢群体间的遗传距离变幅为0.005~0.015;分子方差分析结果显示,遗传变异主要来自群体内部(98.0%),群体的遗传分化指数Fst值为0.019 97;两两群体间Fst值统计表明,长江水系和淮河水系群体间有显著的遗传差异(P<0.05)。单倍型系统进化树和网络结构图显示,单倍型划分为2个谱系,但没有形成明显的地理聚群。歧点...  相似文献   

8.
利用线粒体DNA细胞色素b基因的421 bp部分序列对北屯、乌伦古湖、博斯腾湖3个野生河鲈(Perca fluviatilis)群体和北湖、五家渠2个养殖河鲈群体序列多样性与种群遗传结构进行分析。结果表明:100个个体中检测到7个单倍型,变异位点10个,其中野生群体60个个体检测到9个变异位点和6个单倍型,养殖群体40个个体共检测到8个变异位点和4种单倍型;野生群体平均单倍型多样性和平均核苷酸多样性(Hd=0.496±0.121,Pi=0.002 53±0.001 54)高于养殖群体(Hd=0.416±0.127,Pi=0.001 23±0.001 13),分子方差分析揭示,98.74%的遗传变异性出现在种群内个体间。群体间的FST分析揭示野生群体和养殖群体分化程度较低(0.05FST0.15)。分子系统树和单倍型网络图分析也表明,河鲈单倍型间关系较近,野生群体和养殖群体不存在显著分化。  相似文献   

9.
为了解蓝圆鲹(Decapterus maruadsi)遗传多样性和种群结构,提出合理的蓝圆鲹种质资源保护依据,测定并分析了中国沿海10个地理群体193个体线粒体细胞色素C氧化酶I(COⅠ)基因序列。在652 bp的COⅠ序列中共检测到62个变异位点,29个单倍型,总体呈现较高的单倍型多样性(0.626 00±0.030 00)和低核苷酸多样性(0.002 25±0.001 16)的特点。核苷酸多样性显示:以福建海域为界北方高于南方(北方π=0.004 06~0.005 68,南方π=0.000 17~0.003 05),南海以阳江为界东部高于西部(东部π=0.001 43~0.005 68,西部π=0.000 17~0.002 86),单倍型网络图未出现明显系谱结构和地理结构。群体间遗传分化系数F_(st)显示,北海群体与其他群体有较高的遗传分化(F_(st)=0.145~0.798,P<0.001),新盈与陵水、惠来、阳江、福州和舟山样本之间也存在较高的遗传分化(F_(st)=0.006~0.229,P<0.05),其余群体间分化不显著。AMOVA分析表明,组群内群体间的变异比例占到16.66%~19.49%,原因可能是蓝圆鲹只作短距离洄游的生活习性以及受中国沿岸流、黑潮、暖流和北部湾特殊的大陆架的影响、北海和新盈与其他群体基因交流有限所致。蓝圆鲹整体的Fu’s F_S为显著性负值(F_S=-1.171 8,P<0.01);核苷酸错配峰图为明显单峰;单倍型网络图呈典型星状结构,表明蓝圆鲹群体经历过种群扩张。根据Bayesian skyline plot(BSP)分析扩张大约发生在0.222百万年前。北海和新盈群体与其他群体间存在较高的分化,可作为独立的管理保护单位,其中核苷酸多样性最低的新盈群体需避免遗传多样性的进一步降低;其余群体作为另一管理保护单位,其中崂山群体核苷酸多样性最高,舟山群体其次,应重点保护二者的种质遗传资源。  相似文献   

10.
为了对长江中上游鲢(Hypophthalmichthys molitrix)种质资源现状进行监测和评价,本研究利用线粒体细胞色素C氧化酶I(cytochrome c oxidase subunit I)基因(COI)对长江中上游宜宾、忠县、万州、石首、监利、湘江6个鲢群体进行了遗传多样性分析。结果表明,在648 bp的COI序列中共检测到42个变异位点,其中单变异位点14个,简约信息位点28个。6个群体123个个体共定义了26个单倍型,单倍型多样性为0.0476~0.0945,核苷酸多样性为0.00196~0.00982。6个鲢群体总体遗传多样性丰富,万州群体单倍型多样性和核苷酸多样性均最高,忠县群体单倍型多样性最低,核苷酸多样性最低的为石首群体。遗传变异主要来自群体内个体间,单倍型网络图和系统进化树显示各群体的单倍型没有形成明显的地理格局。此外,上游宜宾群体和万州群体与中游的石首、监利和湘江群体具有明显的遗传分化,中游的监利群体与石首群体和湘江群体也有一定的遗传分化,上游群体和中游群体应该分属于长江水系两个不同的种群。  相似文献   

11.
运用线粒体DNA(mt DNA)控制区部分基因序列测序技术对6个凡纳滨对虾养殖群体(S1、S2、G1、G2、K1和Sg)的遗传多样性和系统进化关系进行了分析。结果显示,在检测到的146个单倍型中,144个为单群体特有,其余两个为群体S1和S2共享。6个群体的单倍型多样性(Hd)为0.42–0.99,核苷酸多样性(π)为0.00–0.08,其中,单倍型多样性最高的是群体K1(Hd=0.99±0.01),核苷酸多样性最高的是群体S2(π=0.08±0.04)。综合考虑,遗传多样性最低的为群体S1(Hd=0.42±0.08,π=0.00),遗传多样性最高的是群体S2(Hd=0.88±0.02,π=0.08±0.04)。AMOVA分析结果显示,来自群体间的遗传差异(46.98%)略低于来自群体内的遗传差异(53.02%)。各群体间的遗传分化Fst值均为正值(0.173–0.974),表明6个群体间存在较大程度的遗传分化差异。基于遗传距离的构建的UPGMA系统进化树和基于单倍型结果构建的NJ聚类图显示,系统进化树主要分为两支:S1和S2群体聚在一起成为一支;G1和G2群体首先聚在一起,再与Sg群体聚在一起,随后与K1群体聚成另一支,6个群体单倍型的聚类关系与遗传距离的进化关系类似。进一步对群体内雌雄群体间遗传差异进行分析发现,同一群体的雌雄群体间遗传多样性水平相近,雌雄群体间基本出现轻微到明显的遗传分化;比较相同群体不同生长速率的个体的遗传参数发现,生长较快群体与生长较慢群体间可能出现一定程度的遗传分化差异;对同一公司不同时间购买的群体分析发现,购买间隔较长(7–9个月)的群体之间的遗传分化值可能会大于不同种虾公司间群体的遗传分化值。  相似文献   

12.
运用线粒体DNA(mtDNA)控制区部分基因序列测序技术对6个凡纳滨对虾养殖群体(S1、S2、G1、G2、K1和Sg)的遗传多样性和系统进化关系进行了分析.结果显示,在检测到的146个单倍型中,144个为单群体特有,其余两个为群体S1和S2共享.6个群体的单倍型多样性(Hd)为0.42-0.99,核苷酸多样性(π)为0.00-0.08,其中,单倍型多样性最高的是群体K1 (Hd=0.99±0.01),核苷酸多样性最高的是群体S2 (π=0.08±0.04).综合考虑,遗传多样性最低的为群体S1(Hd=0.42±0.08,π=0.00),遗传多样性最高的是群体S2 (Hd=0.88±0.02,π=0.08±0.04).AMOVA分析结果显示,来自群体间的遗传差异(46.98%)略低于来自群体内的遗传差异(53.02%).各群体间的遗传分化Fst值均为正值(0.173-0.974),表明6个群体间存在较大程度的遗传分化差异.基于遗传距离的构建的UPGMA系统进化树和基于单倍型结果构建的NJ聚类图显示,系统进化树主要分为两支:S1和S2群体聚在一起成为一支;G1和G2群体首先聚在一起,再与Sg群体聚在一起,随后与K1群体聚成另一支,6个群体单倍型的聚类关系与遗传距离的进化关系类似.进一步对群体内雌雄群体间遗传差异进行分析发现,同一群体的雌雄群体间遗传多样性水平相近,雌雄群体间基本出现轻微到明显的遗传分化;比较相同群体不同生长速率的个体的遗传参数发现,生长较快群体与生长较慢群体间可能出现一定程度的遗传分化差异;对同一公司不同时间购买的群体分析发现,购买间隔较长(7-9个月)的群体之间的遗传分化值可能会大于不同种虾公司间群体的遗传分化值.  相似文献   

13.
《海洋渔业》2021,43(3)
为了解中国近海褐斑鲬(Platycephalus sp.1)遗传多样性和种群遗传结构,提出合理的种质资源保护建议,分析了中国近海褐斑鲬7个群体155个个体的细胞色素C氧化酶cox1 5′端652 bp序列,结果共检测到28个变异位点,定义28个单倍型。中国近海褐斑鲬总体属于低单倍型多样性(0.428)、低核苷酸多样性(0.001 02)类型。其中,单倍型多样性防城港群体最高(0.864),连云港群体次之(0.489),福州群体最低(0.298);核苷酸多样性防城港群体最高(0.003 02),大连群体次之(0.001 24),南通群体最低(0.000 61)。群体间遗传分化系数F_(st)为-0.021 27~0.189 29,其中,广西防城港群体与其余群体间F_(st)为0.088 61~0.189 29(P0.05),表明琼州海峡两侧群体存在一定程度的遗传分化;AMOVA分析也显示琼州海峡两侧群体间分子差异占据了全部差异来源的24.19%。推测其成因,一方面是琼州海峡削弱了两侧群体间通过海流流动带来的基因交流;另一方面,琼州海峡以东群体在海洋环流系统和鱼类生殖洄游作用下更加趋向同质化。防城港群体中性检验结果均为负值(D=-1.024,P=0.152;F_s=-2.60,P=0.015),表明种群可能发生过种群扩张;琼州海峡东侧群体中性检验为极显著负值(D=-2.468,P=0.000;F_s=-34.02,P=0.000),Bayesian skyline plot出现拐点,说明发生了扩张事件,扩张时间约为2.5万年前。推测褐斑鲬祖先群体在末次间冰期扩张,在末次冰期则回归避难所,在末次冰期后期伴随着海平面上升扩张到中国近海海域。基于中国近海褐斑鲬的遗传结构,建议将琼州海峡两侧群体分别作为独立管理单元,因地制宜,合理管理、保护和开发。其中,防城港群体遗传多样性最高,建议优先保护以便利用;大连群体是琼州海峡东侧群组中核苷酸多样性最高的群体,也应重点保护;南通群体核苷酸多样性最低,应采取措施避免其遗传多样性进一步下降。  相似文献   

14.
采用线粒体D-loop序列及SSR标记分析广东4个宝石鲈(Scortum barcoo)养殖群体的遗传多样性。D-loop序列分析显示,长度为598bp的D-loop片段上有14个多态性位点,共定义8个单倍型。4个群体单倍型多样性指数、核苷酸多样性指数分别为0.0000~0.5435、0.00000~0.00176,表明4个群体遗传多样性水平均较低。利用11个SSR位点分析显示,4个群体期望杂合度(He)=0.396~0.516、PIC=0.320~0.420,说明各群体遗传多样性处于中低水平。虽然二种方法获得的遗传分化指数FST上存在差异,分别为0.4035(D-loop)和0.0445(SSR),但二种分析结果均显示4个广东群体的遗传多样性较低、亲缘关系较近,因此有必要引进原种以丰富国内养殖群体的遗传多样性。  相似文献   

15.
基于线粒体控制区的中国南海海域卵形鲳鲹遗传多样性   总被引:1,自引:0,他引:1  
为探讨中国南海重要经济鱼类卵形鲳鲹(Trachinotus ovatus)的遗传多样性,测定了广东闸坡、乌石、安铺和广西东兴以及海南新盈等5个地理群体97 ind样品的线粒体控制区5'端359 bp序列,发现47个变异位点,32个单倍型,总体呈现高单倍型多样性(h=0.951)和高核苷酸(π=0.020 9)多样性的特点。在邻接树和单倍型网络图中出现2个分化显著但不存在明显地理聚群的分支,推测二者的分化时间约为60~18万年前(中更新世),可能是中更新世冰期海平面下降形成边缘海而导致隔离,间冰期海平面上升后出现二次接触。不同地理群体间的遗传分化不显著(Fst=-0.022 4~0.045 3),AMOVA分析也显示97%以上的遗传变异来源于群体内个体间。卵形鲳鲹2个谱系及总体的核苷酸错配图呈现多峰,中性检验均为负值不显著(P0.05),表明都未经历过大规模的种群扩张,处于相对稳定的状态。  相似文献   

16.
为了解西江流域广西境内卷口鱼(Ptychidio jordani)种群遗传结构及分化程度,采用线粒体Cytb基因序列对西江流域广西境内6个江段的139尾野生卷口鱼的遗传多样性进行了分析。结果显示,线粒体Cytb基因长度为1 053 bp,碱基T、C、A、G的平均含量分别为29.1%、27.7%、29.3%、13.9%,其中A+T (58.4%)高于C+G(41.6%)。共定义20个单倍型,并聚为2个分支,未观察到明显的地理聚群。6个卷口鱼群体的平均单倍型多样性和平均核苷酸多样性分别为0.768 2、0.002 3,其中红水河群体(单倍型多样性h=0.748 7,核苷酸多样性π=0.003 3)遗传多样性最高,柳江群体(h=0.274 4,π=0.000 4)和左江群体(h=0.374 7,π=0.000 3)的遗传多样性相对较低。卷口鱼总体的遗传分化指数(F_(ST))为0.461 4 (P0.01),表现出较大的遗传分化。两两群体间遗传分化结果显示,左江和柳江种群之间的遗传分化程度最大,而柳江和西江之间最小。AMOVA分析表明西江流域的卷口鱼群体遗传变异一半来自群体内(53.86%),一半来自群体间(46.14%)。中性检验(Tajima's D=-1.082 8,P0.05;Fu's Fs=-6.572 5, 0.01P0.05)与碱基错配分布分析表明西江流域卷口鱼种群大约在0.07~0.187 Ma经历了种群扩张。综上,西江流域广西境内的卷口鱼柳江群体和左江群体遗传多样性较低,总群体分化程度较大,但仍属于一个种群,其中空间距离与地理阻隔对卷口鱼的遗传分化具有一定的促进作用。  相似文献   

17.
基于线粒体控制区序列的南海北部近岸鯻的遗传多样性   总被引:1,自引:0,他引:1  
80尾鯻(Therapon theraps)样本采自广东碣石、阳江,广西东兴,海南临高、陵水,测定其线粒体控制区951 bp序列,发现42个变异位点,60个单倍型。南海北部近岸鯻总体的单倍型多样性(0.986±0.007)和核苷酸多样性相对较低(0.009±0.000),其中陵水群体核苷酸多样性最高(0.010),碣石、阳江、东兴群体最低(0.008)。单倍型网络图与邻接树没有形成明显不同的谱系分支和地理聚群,表明不存在谱系结构和地理结构。大陆沿岸碣石、阳江和东兴群体间的遗传分化系数(Fst)为–0.017 5~0.008 9(P0.05),基因流(Nm)值为–14.54~27.84;海南岛临高和陵水群体间Fst为–0.046 0(P0.05),Nm为–5.68,表明大陆沿岸群体内部和海南岛群体内部都无明显分化;但海南岛与大陆群体间的Fst为0.061 6~0.135 3(P0.05),Nm为1.87~3.81。分子方差分析显示,大陆沿岸群体和海南岛群体间分化极显著(FCT=0.100 7,P=0.000 0),可能是受大陆与海南岛分离形成的琼州海峡,全年余流方向总趋势是由东向西,且强度较高的影响。南海北部近岸鯻可作为2个管理单位进行保护,建议优先保护陵水群体。单倍型简约性网络图呈非典型的星状分布,中性检验Fu’s Fs为显著负值且核苷酸不配对分析为单峰分布,表明历史上经历过种群扩张事件,推测扩张年代为晚更新世(3.62万年前),扩张后的有效群体大小约为扩张前的8.7×106倍,可能是受到海退缩减和海侵扩张的影响。  相似文献   

18.
为了解中国沿海蓝点马鲛(Scomberomorus niphonius)的遗传背景以更好地保护和开发利用种质资源,对分布于渤海、黄海、东海和南海海域的6个群体76 ind蓝点马鲛线粒体COI基因712 bp序列进行了测定,并结合Gen Bank中下载的9条南海蓝点马鲛序列,分析其遗传多样性、种群结构和历史动态。共检测到21个变异位点,17个单倍型,总体呈现高单倍型多样性(Hd=0.702±0.044)和低核苷酸多样性(π=0.002 8±0.000 2)的特点,其中渤海、黄海和东海海域的蓝点马鲛群体遗传多样性指数相对较高(Hd:0.695~0.816,π:0.002 7~0.003 3),而南海群体明显偏低(Hd=0.442±0.145,π=0.001 7±0.000 6),推测是由于黄海和东海是中心分布区,而南海是边缘分布区的缘故。AMOVA分析结果显示,群体间(-6.27%~-1.52%)不存在变异,群体内个体间(101.52%~106.56%)的变异是变异的主要来源;群体间遗传分化系数Fst值为-0.138~0.040(P0.05),遗传距离N_m值为-81.145~-4.134、11.876~146.559,均大于4或小于0,表明群体间不存在遗传分化,不同海域群体间基因交流频繁,这可能与蓝点马鲛分布范围广、具长距离迁移能力、产卵和越冬时均可发生洄游以及鱼卵具漂浮性且为多次性产卵类型等原因有关。聚类分析的邻接树与单倍型网络图上出现的2个分支均在更新世晚期发生过种群快速扩张事件,但蓝点马鲛总体在数据上未呈现出种群扩张现象,可能是2个分支的叠加造成整体核苷酸不配对分析图呈现多峰分布。  相似文献   

19.
测定了连云港、舟山、防城群体34 ind军曹鱼(Rachycentron canadum)线粒体细胞色素b基因883 bp序列,共检测到5个变异位点,发现6个单倍型,平均单倍型多样性(h)和核苷酸多样性(π)分别为0.324和0.000 4,总体表现出较低的遗传多样性;其中连云港群体遗传多样性最高,单倍型多样性和核苷酸遗传多样性分别为0.473±0.162和0.000 57±0.005 93;而舟山群体没有任何变异。连云港与舟山、防城群体间的FST值分别为0.029(P=0.00)与0.042(P=0.00),舟山与防城群体间的FST为-0.048 03(P=0.00),表明连云港与其它两个群体间仅有较低的分化而舟山与防城群体间无明显分化。分子方差分析(AMOVA)表明,3个群体的遗传变异大部分来自于群体内(74.45%,P=0.000)。军曹鱼单倍型拓扑结构呈星状排列,将3个群体作为一个整体进行Tajimas D和Fu’s Fs分析,二者均为显著负值(FST=-1.922 40,P﹤0.00;FST=-5.735,P﹤0.00),表明军曹鱼在历史上经历了种群的扩张,根据τ的观察值0.364,估算出军曹鱼种群扩张时间约为3.1~1.2万年,即末次冰盛期。  相似文献   

20.
西江流域卷口鱼线粒体D-loop序列的遗传多样性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究西江流域广西境内卷口鱼(Ptychidio jordani)种群的遗传变异情况,自广西境内6个江段采集了139尾样本,采用PCR与DNA测序技术分析其线粒体D-loop序列的遗传多样性及群体历史动态;139条D-loop序列长度均为725 bp,碱基组成A+T (65.7%)远远高于C+G (34.3%),共检测到变异位点25个,转颠换比R值为11.5。139尾样本共定义23个单倍型。单倍型的NJ系统树以及网络结构图显示,23个单倍型间有2个明显分支,不同地理群体来源的单倍型混杂分布在2个分支中,未能观察到明显的地理聚群。6个群体遗传多样性较好,单倍型多样性Hd=0.71585~0.92063,核苷酸多样性Pi=0.00173~0.00668,遗传分化极其显著(遗传分化系数Fst=0.36737,P<0.001)。AMOVA分析表明,群体内变异占63.26%,群体间为36.74%。中性检验(Tajima’s D= –0.50322,P=0.34600;Fu’s Fs= –5.05210,P=0.08800)与核苷酸错配分布表明,西江流域卷口鱼种群近期内未经历过种群扩张。综上所述,西江流域广西境内的卷口鱼遗传多样性表现为高单倍型、低核苷酸多样性的特征,群体间不同程度的遗传分化表明水坝阻隔及捕捞因素可能促进其发生,而水利梯级开发可能是促进卷口鱼群体遗传分化的首要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号