首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
配制6种不同糖/脂肪比例(CHO∶L分别为4.29、2.79、1.86、1.19、0.73和0.41)的等氮等能饲料,饲养暗纹东方鲀幼鱼[初始体重为(11.2 ± 0.5) g] 60 d,探讨饲料中糖与脂肪比例对其生长、饲料利用、生理生化指标和PEPCK基因表达的影响。试验结果表明:随饲料中CHO∶L降低,暗纹东方鲀特定生长率(SGR)、蛋白质效率(PER)和饲料效率(FE)先升高后降低,且均在CHO∶L为1.86时达最大,显著高于CHO∶L为0.41、0.73和4.29时的值(P<0.05)。血浆甘油三酯和肝脏脂肪含量随CHO∶L降低而显著增加(P<0.05),而血糖和肝糖原含量随CHO∶L降低而显著降低(P<0.05)。随饲料中CHO∶L降低,肝脏脂肪酶和脂肪合成酶活性先增加后降低,分别在CHO∶L为1.19和1.86时活性最高。CHO∶L为1.86-4.29时PK活性显著高于其他饲料组(P<0.05)。CHO:L为0.41和0.73时,AMS活性显著低于其他饲料组(P<0.05),而PEPCK活性和mRNA相对表达量显著高于其他饲料组(P<0.05)。饲料中CHO∶L对暗纹东方鲀存活率和血浆总胆固醇含量无显著影响(P>0.05)。分别用二次多项回归模型拟合SGR、PER、FE和CHO∶L的关系,得到暗纹东方鲀幼鱼饲料中CHO∶L的适宜范围为2.01~2.16,且其对碳水化合物的利用能力要高于脂肪。  相似文献   

2.
An 8‐wk feeding trial was conducted to investigate the effects of dietary carbohydrate‐to‐lipid ratios (CHO : L) on growth performance, body composition, digestive enzyme activities, and hepatic enzyme activities of juvenile large yellow croaker, Larimichthys crocea. Six isonitrogenous (45% crude protein) and isoenergetic (18 kJ/g gross energy) diets with varying CHO : L ratios (0.07, 0.48, 1.20, 2.19, 4.81, and 10.48) were fed to triplicate groups of large yellow croaker in floating sea cages. Results showed that the highest specific growth rate (SGR) was found in fish fed diets with CHO : L ratio of 2.19. Fish fed the lower (0.07 and 0.48) CHO : L ratios tended to produce lower growth (P < 0.05). The whole‐body lipid content significantly decreased, while hepatosomatic index, liver glycogen content, and plasma glucose concentration significantly increased as dietary CHO : L ratios increased (P < 0.05). Plasma total cholesterol, triglyceride, and low‐density lipoprotein cholesterol concentrations significantly decreased with elevated dietary CHO : L ratios (P < 0.05). The increasing dietary CHO : L ratios significantly stimulated the activities of intestinal amylase and hepatic pyruvate kinase and depressed the activity of hepatic phosphoenolpyruvate carboxykinase (P < 0.05). Based on a second‐order polynomial regression analysis of SGR, 2.38 was determined as the optimal dietary CHO : L ratio for juvenile large yellow croaker.  相似文献   

3.
A growth experiment was conducted to determine the optimal dietary carbohydrate‐to‐lipid (CHO : L) ratio for the Australian redclaw crayfish, Cherax quadricarinatus (von Martens). Specimens were divided into five treatment groups and fed twice a day to apparent satiation with isonitrogenous and isoenergetic diets with dietary CHO : L ratios of 10.75:1, 5.99:1, 3.60:1, 2.18:1, or 1.33:1. Over the 8‐wk growth trial, redclaw crayfish fed the 2.81:1 and 3.60:1 diets exhibited better weight gain (WG), specific growth rate (SGR), and feed conversion ratio (FCR) than specimens fed the other diets (P < 0.05). Activities of hexokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate, whereas activities of lipase and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Dietary CHO : L ratios significantly affected digestive enzyme activities (P < 0.05), except for trypsin (P > 0.05). On the basis of the analysis of growth, FCR, and costs of culturing redclaw crayfish, the optimal growth and costs occurred when the dietary carbohydrate and lipid levels were 290.10 g/kg and 80.70 g/kg, respectively, corresponding to a CHO : L ratio of 3.60:1. These results indicate that a CHO : L ratio of 3.60:1 is optimal for rearing redclaw crayfish and that this species uses carbohydrate more efficiently than lipid.  相似文献   

4.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

5.
A growth experiment was conducted to determine the optimal carbohydrate‐to‐lipid (CHO: L) ratio for juvenile yellowfin seabream cultured in 340‐L indoor recirculating tanks. Seven isonitrogenous (450 g kg−1 dietary protein) and isoenergetic (14.1 MJ kg−1) diets with increasing CHO: L ratios (0.03–5.09 g: g) were fed to triplicate groups of 30 fish with an initial weight of 4.91 g for 56 days. Fish were fed to satiation twice a day and the water temperature ranged between 28 and 31.7 °C during the experimental period. Survival was high in all the groups and was not affected by dietary treatments. Best weight gain (WG) and specific growth rate (SGR) were observed in fish fed diets with CHO: L ratios of 0.29 and 0.72, which were not significantly different from that of 0.03, 1.26 and 1.92, but apparently higher than that of 3.22 and 5.09. Feed efficiency (FE), protein efficiency ratio (PER) and protein production value (PPV) followed the same general pattern as WG and SGR. Highest level of energy production value (EPV) was found in fish fed diets with CHO: L ratio of 0.72. Proximate compositions of fish whole body and tissues were markedly affected by dietary CHO: L ratios. Whole body, muscle and liver lipid increased as CHO: L ratios decreased, whereas moisture contents were reduced. Dietary CHO: L ratios had no significant effect on protein content in whole body and muscle. Plasma total cholesterol levels of fish fed diets with CHO: L ratios less than 0.72 were significantly higher than those of the other groups. Triacylglyceride levels decreased linearly as dietary CHO: L ratios increased. Viscerosomatic index (VSI) significantly increased as dietary CHO: L ratios decreased. Intraperitoneal fat ratio (IPF) of fish fed diets with CHO: L ratios less than 1.92 were significantly higher than those fed CHO: L ratios of 3.22 and 5.09. Hepatosomatic index (HSI) did not vary between the test diets. Based on second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 84.1 g kg−1 of carbohydrate and 136.3 g kg−1 of lipid, corresponding to a CHO: L ratio of 0.62, in a diet holding 450 g kg−1 of crude protein and 14 KJ g−1 of metabolizable energy, proved to be optimal for juvenile yellowfin seabream.  相似文献   

6.
王菲  李向飞  李贵锋  刘文斌 《水产学报》2015,39(9):1386-1394
本试验研究了饲料中不同糖脂比对建鲤幼鱼生长、体组成、消化及糖酵解的影响。试验共配制6组等氮等能的半纯合饲料,对应糖脂比分别为2.3,3.0,4.0,5.6,7.7和12.1。将鱼饱食投喂8周,每日投喂3次。试验结果表明,当饲料糖脂比从2.3升高至7.7时,增重率、特定生长率、蛋白质效率和蛋白保留率均显著升高(P < 0.05);而当糖脂比进一步升高时,其均呈下降趋势,但差异不显著(P > 0.05);饲料系数的变化趋势与其相反。建鲤幼鱼的脏体比以及全鱼、胴体和肝脏脂肪含量随着饲料糖脂比的降低均显著升高(P < 0.05),而全鱼、胴体和肝脏的蛋白质含量无显著差异(P > 0.05)。肠道淀粉酶活性随着糖脂比的升高显著升高(P < 0.05),而脂肪酶的变化趋势则相反(P < 0.05)。此外,血糖和胰岛素水平、肝糖原含量及肝脏葡萄糖激酶和丙酮酸激酶活性随饲料糖脂比的升高均显著升高(P < 0.05),血液中总胆固醇和甘油三酯含量则随着糖脂比的降低显著升高(P < 0.05)。根据二次回归模型得出,在等氮等能的饲料条件下,建鲤幼鱼最适宜的糖水平和脂肪水平分别为38.21%和4.69%,对应的糖脂比为8.14。  相似文献   

7.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

8.
An 8-week feeding experiment was conducted to investigate the effects of different dietary macronutrient level and feeding frequency on the growth, feed utilization, and body composition of juvenile rockfish. Triplicate groups of fish (body weight of 4.1 g) were fed the experimental diets containing either high levels of carbohydrate (HC, 35%), lipid (HL, 13%), or protein (HP, 55%) at different feeding frequencies (twice daily, once daily, and once every 2 days). Weight gain was affected by feeding frequency but not by dietary composition. Weight gain of fish fed the diets once every 2 days was significantly (P < 0.05) lower than that of other groups. Daily feed intake and energy intake were affected by both dietary composition and feeding frequency. Daily feed intake of fish fed the HC diet was significantly (P < 0.05) higher than that of fish fed the HL and HP diets at the same feeding frequency. Feed efficiency and protein efficiency ratio were affected by both dietary composition and feeding frequency and decreased with increasing feeding frequency in the same dietary composition. Feed efficiency and protein efficiency ratio of fish fed the HC diet were significantly (P < 0.05) lower than those of fish fed the HL diet at the same feeding frequency. Whole-body lipid content of fish fed the HL diet was significantly (P < 0.05) higher than that of fish fed the HC and HP diets at the same feeding frequency. These results indicate that an increase of dietary lipid level compared with dietary carbohydrate level may have the advantage of a protein-sparing effect at same feeding frequency, and a once-daily feeding regime is more effective than twice daily or one feeding every 2 days to improve growth performance of juvenile rockfish grown from 4 to 21 g.  相似文献   

9.
This study was carried out to investigate and compare the effects of various dietary lipid sources on growth performance, body composition, fatty acid profiles, and hepatic and plasma antioxidant enzyme activities of juvenile rockfish, Sebastes schlegeli. Three replicate groups of fish (initial mean weight, 1.7 ± 0.04 g) were fed four isonitrogenous and isolipidic diets containing either fish oil (FO), soybean oil (SO), linseed oil (LO), or a mixture of SO and LO (SO + LO) for 8 wk. There were no significant differences in survival, weight gain, feed efficiency, and protein efficiency ratios of fish fed the diets containing different lipid sources (P > 0.05). The fatty acids compositions of the liver and muscle tissues reflected the dietary fatty acid compositions. Liver and muscle of fish fed the SO diet had high concentration of linoleic acid, whereas those of fish fed the LO diet were rich in linolenic acid. Liver and muscle of fish fed the FO diet had significantly (P < 0.05) higher levels of eicosapentaenoic acid and docosahexaenoic acid than those of fish fed the SO and LO diets. Dietary lipid source had no significant effect on the hepatic and plasma enzyme activities of superoxide dismutase and glutathione peroxidase. The results of this study suggest that SO and LO can be used as a replacement for FO in the diets of juvenile rockfish without incurring any negative effects on growth, feed utilization, and antioxidant enzyme activity, when the dietary essential fatty acid requirements are satisfied for rockfish.  相似文献   

10.
Four isonitrogenous diets containing different carbohydrate:lipid (CHO:L) ratios (0.3, 0.6, 1.1 and 1.8) were tested in triplicate groups (16 fish per replicate) of silvery‐black porgy juveniles for 8 weeks. Growth performance was not affected by different dietary CHO:L ratios (P > 0.05); however, the viscerosomatic index, the intraperitoneal fat, whole‐body lipid, energy and n‐3 long chain polyunsaturated fatty acids levels increased with decreasing dietary CHO:L ratios (P < 0.05). Fish fed with 1.8 CHO:L diet had the lowest apparent digestibility coefficients of protein and lipid, as well as the lowest plasma haemolytic and lysozyme activities (< 0.05). Red blood cell counts and plasma glucose levels were higher in fish fed with 1.1 and 1.8 CHO:L ratio diets than in the other groups (< 0.05). Plasma alkaline phosphatase and alanine aminotransferase, as well as the level of lipid peroxidation and total antioxidant capacity in the liver and plasma increased as dietary CHO:L ratios decreased (< 0.05). The results of the current study indicated that the diets with CHO:L ratios between 0.6 and 1.1 are optimal for silvery‐black porgy, whereas higher ratios may result in hyperglycaemia and immune suppression, and lower CHO:L ratios may lead to oxidative stress and liver dysfunction.  相似文献   

11.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate‐to‐lipid (CHO:L) ratios on growth, liver and muscle glycogen content, haematological indices, and liver and intestinal enzyme activity of juvenile grouper (Epinephelus coioides). Five isonitrogenous (496.0 g/kg protein) and isoenergetic (21.6 KJ/g gross energy) diets with varying CHO:L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4) and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 10.02 ± 0.1 g) for 8 weeks. Results showed that the weight gain rate, specific growth rate and protein efficiency ratio (PER) of juvenile grouper increased first and then decreased with the increase in CHO:L ratio, reaching a maximum value in the D4 (CHO:L = 4.24) diet. The trend for the feed conversion ratio was opposite to the PER. Along with the diet CHO:L ratios, the apparent digestibility coefficients (ADC) of crude lipid and energy for the juvenile groupers decreased gradually, while the ADC of dry matter, liver and muscle glycogen level increased gradually. Total protein, triglycerides and cholesterol in serum were all maximized in the D4 diet and glucose in the D5 (CHO:L = 8.51) diet. Digestive enzyme activity in the intestine was significantly affected by dietary CHO:L ratio. Liver hexokinase, phosphofructokinase and glucose‐6‐phosphate dehydrogenase activity increased significantly as CHO:L ratio increased. Liver lysozyme and acid phosphatase activity in the groupers fed the D3 (CHO:L = 2.33) diet was significantly higher than that of other diets. Liver fructose‐1,6‐bisphosphatase and alkaline phosphatase activity reached a maximum value in the D4 diet and was significantly higher than that in the D1 diet. Taking the above results together, it can be concluded that an optimal dietary CHO:L ratio of 2.33 is suitable for grouper culture concerning growth performance and health.  相似文献   

12.
A feeding trial was conducted to estimate the optimum level of dietary n‐3 highly unsaturated fatty acids (HUFAs) for juvenile sea cucumber, Apostichopus japonicas, based on growth performance and fatty acid compositions. Diets with five n‐3 HUFAs levels (0.15, 0.22, 0.33, 0.38, and 0.46%) were fed to sea cucumber juveniles (1.97 ± 0.01 g) once a day for 60 d. The sea cucumbers fed diets containing 0.22% n‐3 HUFAs showed significantly (P < 0.05) higher body weight gain, feed efficiency, and protein efficiency ratio than the sea cucumbers fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.33, 0.38, and 0.46% n‐3 HUFAs. The sea cucumbers fed diets containing 0.46% n‐3 HUFAs showed significantly (P < 0.05) higher eicosapentaenoic acid and saturated fatty acid than the sea cucumber fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.22, 0.33, and 0.38% n‐3 HUFAs. The results of growth performance and n‐3 HUFA compositions of body wall indicated that the optimum level of dietary n‐3 HUFAs for juvenile sea cucumber is between 0.22 and 0.46%.  相似文献   

13.
Excessive carbohydrates (CHO) in diets for largemouth bass (LMB), Micropterus salmoides, are suspected of accumulating glycogen in hepatocytes, which may result in liver dysfunction. This study evaluated the effect of graded levels of dietary CHO on growth, survival, and liver histology of LMB. One hundred feed‐trained advanced fingerling LMB (128.5 ± 21.5 g) were stocked into each of nine 3400 ‐ L polyethylene tanks. Tanks were randomly assigned one of three experimental diets containing different CHO levels (13, 19, or 25% of diet). The extruded diets were approximately isonitrogenous (42% crude protein) and isocaloric (3 kcal/g energy). There were three replicate tanks per dietary treatment. Bass were fed to apparent satiation twice daily for 148 d. Survival was significantly higher (P ≤ 0.05) for fish fed the 13 and 19% CHO diets (89 and 90%, respectively) compared to those fed the 25% CHO diets (82%). Average harvest weight of fish fed the 13% CHO diet (380 g) was significantly greater (P ≤ 0.05) than for fish fed other diets. Average harvest weight of fish fed the 19% CHO diet (347 g) was significantly greater (P ≤ 0.05) than for fish fed the 25% CHO diet (310 g). Specific growth rates (%/d) were significantly higher (P ≤ 0.05) in fish fed the 13 and 19% CHO diets than in fish fed 25% CHO diet. Feed conversion ratios for fish fed the 13 and 19% CHO diets (2.3 and 2.4, respectively) were both significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (3.6). There were no significant differences (P > 0.05) in condition factor, protein efficiency ratio, hepatosomatic index, or liver glycogen concentration among fish fed the different experimental diets. Overall, mean blood glucose levels in fish fed the 13 and 19% CHO diets (61.0 and 71.2 mg/dL, respectively) were significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (87 mg/dL). Histopathological examination of livers from fish fed the three diets was used to score the degree of vacuolization of hepatic tissues (0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe). Regression of vacuolization scores on dietary CHO levels was statistically significant (P ≤ 0.05) and indicated a direct positive relationship between liver vacuolization and dietary CHO level (R2 = 0.57). These data indicate that LMB grow faster and use feeds more efficiently when CHO are maintained at <20% of diet. CHO levels >20% negatively impacted liver histology, but a liver tissue analyses did not document glycogen accumulation.  相似文献   

14.
The limited availability of live bait for capturing skipjack tuna, Katsuwonus pelamis, is a bottleneck to increasing tuna production in many parts of the world. Therefore, a nutrition trial was performed to contribute to the production of the Brazilian sardine, Sardinella brasiliensis, for use as live bait. This study determined the best dietary carbohydrate to lipid ratio (CHO:L) for juvenile Brazilian sardines based on growth performance, feed utilisation, body composition, blood metabolites and digestive enzyme activity. Six isoenergetic and isonitrogenous diets were formulated with increased CHO:L ratios (2.05, 3.41, 4.15, 5.11, 5.80 and 6.72). Each diet was randomly assigned to triplicate groups of 100 fish with mean initial body weight of 2.97 ± 0.51 g, which were fed four times a day to apparent satiation. Survival was not affected by differences in diet, however, a low CHO:L ratio stimulated growth. Juveniles fed with a rich‐carbohydrate diet inhibit feed intake and protein intake. Body lipid increased as dietary lipid increased and was inversely correlated to body moisture. The diets did not affect the juvenile's blood metabolites. Alkaline and acid protease activities were not significantly different, but lipase and amylase responded positively to the dietary lipids and carbohydrates. Using segmented regression, the optimum CHO:L ratio for maximum weight gain of juvenile Brazilian sardines was estimated to be 3.41, which contain approximately 300 g kg?1 carbohydrate and 88 g kg?1 lipid.  相似文献   

15.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

16.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

17.
This study aimed to investigate the optimum dietary carbohydrate/lipid (CHO/L) ratio for bullfrog Rana (Lithobates) catesbeiana. Six isonitrogenous and isoenergetic diets were formulated, containing various CHO/L from 1.20 to 12.11. Bullfrogs were fed six diets for 8 weeks and each diet was tested by three replicates. After the 8 weeks feeding, weight gain and specific growth rate increased significantly as dietary CHO/L ratios decreased, but showed little difference (> 0.05) as dietary CHO/L ratios ranged from 1.20 to 2.76. Nitrogen retention was significantly affected by CHO/L ratios, and bullfrog fed with CHO/L 6.10 and 1.82 diets showed the lowest and highest nitrogen retentions respectively. Energy retention increased significantly as dietary CHO/L ratios decreased and bullfrog fed the CHO/L at 1.82 and 1.20 diets showed the highest value. Whole‐body lipid and energy levels both increased significantly (< 0.05) as dietary CHO/L ratios decreased. Moreover, liver lipid content of bullfrog fed CHO/L 1.82 and 1.20 diets were significantly higher than that of other groups. Plasma insulin level significantly increased as the elevation of dietary CHO/L. Malondialdehyde level increased as the CHO/L decreased, and the bullfrog fed the CHO/L 1.20 diet had the highest level. In conclusion, the present results clearly showed the effects of dietary CHO/L ratios on growth; the optimum CHO/L is 2.07 (approximately 22.49% carbohydrate and 10.83% lipid) based on the second‐order polynomial regression analysis of weight gain.  相似文献   

18.
This study was conducted to investigate the effects of varying carbohydrate (CHO) fractions on growth, body composition, metabolic, and hormonal indices in juvenile black carp, Mylopharyngodon piceus. Juvenile black carp, M. piceus (average weight: 1.5 ± 0.05 g) were fed with graded levels of dietary available CHO (0.06, 10.65, 19.43, 28.84, 37.91, and 47.38%) for 9 wk, respectively. Results showed that the highest weight gain could be obtained at 24.98% dietary CHO using second‐order polynomial regression model; and optimal dietary available CHO content (28.84%) could significantly increase the final body weight and the protein efficiency ratio (PER) while reducing the feed conversion ratio (FCR) (P < 0.05). Dietary available CHO could gradually increase the hepatosomatic index, the crude lipid contents in the whole body and the glucose and triglyceride content in the plasma. The activities of glycolysis enzymes and glucose‐6‐phosphate dehydrogenase could be increased with increasing dietary available CHO. The activities of glucose‐6‐phosphatase and fructose‐1,6‐bisphosphatase were firstly decreased at 10.65% dietary available CHO and increased to stable level at 19.43% dietary available CHO. In addition, both 19.43 and 28.84% dietary available CHO could increase the adiponectin contents in the plasma of black carp, M. piceus. Meanwhile, both 19.43 and 28.84% dietary available CHO could significantly increase the mRNA expression levels of growth hormone, insulin, ghrelin, neuropeptide Y, somatostatin I, and somatostatin II in juvenile black carp, M. piceus, compared with the CHO‐deficient diet (0.06%). These results suggest that optimal inclusion of dietary CHO fractions (19.43–28.84%) could improve metabolic homeostasis and promote growth and feed efficiency in juvenile black carp, M. piceus.  相似文献   

19.
在等蛋白质、等能量基础上,研究碳水化合物与脂类比例(CHO∶L)为10.75∶1、4.81∶1、2.66∶1、1.52∶1和0.87∶1的5组试验饲料对红螯光壳螯虾[初始体质量(1.72±0.01)g]相关生长、生理、生化指标的影响。8周试验结果表明,CHO∶L比例为2.66∶1时,红螯光壳螯虾的增重率、特定生长率和饲料利用率达到最高。高比例的CHO∶L(10.75∶1)和低比例的CHO∶L(0.87∶1)都会显著地抑制(P<0.05)红螯光壳螯虾的生长和饲料的利用。饲料脂肪水平为40~145 g/kg时,虾的脂肪酶和碱性磷酸酶活力显著升高(P<0.05),己糖激酶和丙酮酸激酶活力则呈显著降低趋势(P<0.05)。CHO∶L对虾胃蛋白酶活力影响显著(P<0.01),CHO∶L为2.66∶1和1.52∶1表现出比较高的活力,显著高于(P<0.05)其它试验组。碳水化合物为156.3~360.4 g/kg范围内,虾淀粉酶活力随饲料中碳水化合物的升高而显著升高(P<0.01)。红螯光壳螯虾增重率分别与饲料中碳水化合物和脂肪水平进行二次回归分析得出,红螯光壳螯虾对配合饲料中碳水化合物和脂肪的最适需求量分别为268.28和120.22 g/kg,相对应的CHO∶L为2.20∶1,且红螯光壳螯虾对碳水化合物的利用能力要高于对脂肪的利用。  相似文献   

20.
A 10‐wk experiment was conducted to determine the optimum dietary protein requirement of juvenile Fuxian minnow, Anabarilius grahami (initial average weight 4.14 g). Five isocaloric diets were formulated to contain graded levels of protein (29, 34, 39, 44, and 49%). Each diet was fed to triplicate groups of fish in a recirculating rearing system maintained at 17–21 C. Feed intake of fish fed the 39 and 44% protein diets was significantly higher than that of fish fed the 29, 34, and 49% protein diets (P < 0.05). Weight gain and protein gain significantly increased with increasing dietary protein level up to 39% (P < 0.05), but no significant differences were observed among fish fed the 39, 44, and 49% protein diets (P > 0.05). In contrast, feed conversion ratio decreased with increasing dietary protein level up to 39%. Protein retention efficiency or protein efficiency ratio generally increased with increasing dietary protein level up to 39%, and then the value gradually decreased thereafter. Broken‐line regression analysis showed that the optimum dietary protein requirement for maximum weight gain of juvenile A. grahami under the experimental conditions was 38.6% (equivalent to ca. 33.0% estimated digestible protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号