首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal with cottonseed protein concentrate (CPC) (free gossypol < 7.9 mg/kg) in the diets on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Six diets were designed: fishmeal diets (FM) which contained 340 g/kg fishmeal, as well as five CPC diets, each with differing CPC concentrations (120, 240, 360, 480 and 600 g/kg) to replace the fish meal. The weight gain rate (WGR) and specific growth rate (SGR) showed no significant difference among groups (p > .05) with the dietary CPC level ranged from 0 to 360 g/kg. Serum cholesterol (CHO) of C36 and triglyceride (TG) levels of C36 and C12 were significantly higher than the FM (p < .05). Total protein (TP) levels of C12 were significantly lower than the FM (p < .05). Among the treatments, C36 had higher glutathione peroxidase (GSH‐PX) and total superoxide dismutase (T‐SOD) than FM (p < .05). From the data analysis of 16s sequencing, with increasing CPC concentration, the proportion of harmful microbial taxa (Proteobacteria and Vibrio) increased. The results of this study support that CPC products are acceptable in practical diets for golden pompano. And the optimal dietary CPC replacement of golden pompano was estimated to be 259.3 g/kg.  相似文献   

2.
A feeding trial was conducted to investigate the effects of partial replacement of soybean meal (SBM) with fermented soybean residue (FSR) on growth performance, body composition and plasma biochemical parameters of largemouth bass, Micropterus salmoides. Soybean residue was fermented with a mixture of microorganisms (Bacillus subtilis, Lactobacillus spp. and Molasses yeast) using the solid‐state fermentation. Four isonitrogenous (crude protein 430 g/kg) and isoenergetic (gross energy 18 MJ/kg) diets were formulated by replacing 0 (the control), 20, 40 and 60g/kg of protein from SBM with FSR (FSR0, FSR20, FSR40 and FSR60, respectively). Each diet was fed to four replicate groups of fish (initial body weight: 17.1 ± 0.19 g) for 12 weeks. Results showed that dietary FSR substitution significantly improved growth of juvenile largemouth bass. The weight gain, specific growth rate and protein efficiency ratio were all significantly improved by dietary FSR level up to 40g/kg substitution level (< .05) and then levelled off beyond this level. Fish fed the diet with 40g/kg and 60g/kg protein from FSR had lower feed conversion ratio than the control group (< .05). The hepatosomatic index, viscera ratio and liver lipid content significantly decreased with increasing dietary FSR level. Total protein content, superoxide dismutase and alkaline phosphates activities in plasma were lower in fish fed the control diet (< .05) than the other groups. However, both alanine aminotransferase and aspartate transaminase were higher in fish fed the control diet (< .05) compared to the other treatments. The plasma catalase activity significantly increased with increasing dietary FSR level, while plasma triglyceride, total cholesterol, glucose and malondialdehyde contents significantly reduced. No significant difference was observed in the glutathione peroxidase activity among dietary treatments. These findings demonstrated that replacing dietary SBM with FSR has beneficial effects on growth of M. salmoides, and the best growth performance was obtained at 40g/kg replacement for SBM protein. In addition, there is a great potential to apply FSR to improve lipid metabolism and antioxidant capacity of M. salmoides.  相似文献   

3.
A 5 × 3 factorial growth trial was conducted to evaluate optimal dietary protein and lipid levels (dietary protein level, DP; dietary lipid level, DL) for juvenile Sillago sihama (S. sihama) (2.0 ± 0.02 g, initial weight). Fish were fed 15 diets containing 5 DPs (350, 400, 450, 500 and 550 g/kg) and 3 DLs (60, 90 and 120 g/kg) for 8 weeks. The interaction between proteins and lipids significantly influenced the feed conversion ratio, condition factor, body composition, antioxidant indices and lipase activity (p < .05). DP 450 g/kg showed the highest average final body weight. DPs 500 and 550 g/kg significantly decreased the protein efficiency ratio (p < .05). DL 120 g/kg showed the highest percentage weight gain. The low feed conversion ratio was found in diets P45L12, P55L9 and P55L12. Diet P45L12 showed high superoxide dismutase activities. DP 450 g/kg showed the lowest average malondialdehyde content. Lipase activity was increased by increasing DP (p < .05) with a fall at DP 550 g/kg. Under the present experimental conditions, the optimal DP for S. sihama was 450 g/kg under the DL 120 g/kg.  相似文献   

4.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

5.
The present study was conducted to investigate the effects of dietary sodium butyrate on growth performance, intestine enzyme activities and intestinal proliferation‐related gene expression of juvenile golden pompano Trachinotus ovatus. A basal diet was supplemented with sodium butyrate at 0.0 (control), 0.25, 0.5, 1, 2 and 4 g/kg feed for 8 weeks. The final body weight, weight gain (WG), specific growth rate (SGR) and condition factor (CF) increased with increasing dietary sodium butyrate up to 2.0 g/kg, and thereafter declined, while feed conversion ratio exhibited an opposite trend. Compared with the control, the 2.0 g/kg sodium butyrate group had higher condition factor (CF) significantly (p < 0.05). Whole body ash decreased with increasing dietary sodium butyrate level, with the lowest whole body ash content in 4.0 g/kg sodium butyrate (p < 0.05). Compared with the control, the 2.0 g/kg sodium butyrate group had significantly increased plasma glucose, cholesterol, albumin level, A/G ratio, ALT and AST contents (p < 0.05), while significantly decreased plasma ALT/AST ratio (p < 0.05). As for the intestinal digestive and brush border enzymes activities, compared with the control, the 2.0 and 4.0 g/kg sodium butyrate groups had significantly increased intestinal protease, amylase, AKP and Na+‐K+‐ATPase activities (p < 0.05), respectively. The relative level of intestinal CDX2 mRNA of fish significantly increased with dietary sodium butyrate level. Compared with the control, the 2.0 g/kg sodium butyrate groups had significantly increased the expression of intestinal CDX2 and CREB mRNA (p < 0.05), respectively. In conclusion, these results suggested that the optimum sodium butyrate level for juvenile golden pompano could be 2.0 g/kg of the diet.  相似文献   

6.
This study aimed to investigate the optimum dietary carbohydrate/lipid (CHO/L) ratio for fingerling blunt snout bream Megalobrama amblycephala (average initial weight: 6.61 ± 0.03 g). Six isonitrogenous and isoenergetic diets were formulated to contain various CHO/L ratios ranging from 1.62 to 24.20. Each diet was tested in four replicates for 10 weeks. Specific growth rate (SGR), feed conversion ratio and nitrogen and energy retention all improved significantly (< 0.05) as dietary CHO/L ratios decreased from 24.20 to 5.64 but showed little difference (> 0.05) as dietary CHO/L ratios ranged from 2.45 to 5.64. Hepatosomatic index increased significantly (< 0.05) as dietary CHO/L ratios increased, whereas intraperitoneal fat ratio showed an opposite trend (< 0.05). Opposite to moisture content, lipid content of whole body and carcass all increased significantly (< 0.05) as dietary CHO/L ratios decreased. Liver lipid content showed little difference (> 0.05) among all the treatments, while liver glycogen content increased significantly (< 0.05) with increasing CHO/L ratios. High dietary carbohydrate enhanced the activities of liver hexokinase, pyruvate kinase and glucose‐6‐phosphate dehydrogenase but did not induce hyperglycaemia. Based on the second‐order polynomial regression analysis of SGR, the optimal dietary carbohydrate and lipid contents for fingerling blunt snout bream were 291.7 and 81.4 g kg−1, respectively, with a corresponding dietary CHO/L ratio of 3.58.  相似文献   

7.
A 60‐day feeding experiment was conducted to evaluate the effects of fishmeal (FM) replacement with cottonseed meal protein hydrolysate (CPH) on growth, digestion and intestinal histology of juvenile Chinese soft‐shelled turtle (Pelodiscus sinensis). Five diets were formulated to replace 0, 50, 100, and 150 g/kg fishmeal protein by CPH (CPH0, CPH5, CPH10, CPH15) and CPH15L (CPH15 with micro capsule‐L‐lysine). Weight gain, feed conversion rate and protein efficiency ratio showed no significant differences compared to control group (> .05). The highest feed intake indicated in CPH15 (< .05). The composition of whole‐body varied slightly in each groups (> .05). The trypsin activity significantly elevated when dietary fishmeal protein was replaced by CPH at 30–90 g/kg (< .05). A significantly higher lipase activities in CPH5 than control group (< .05). The CPH5‐10 groups showed higher villus height than the other groups (< .05). The microvillus length in turtles with CPH showed a significant increasing length (< .05). The results indicated that replacing up to 90 g/kg of dietary fishmeal protein with CPH did not hamper growth or reduce feed intake of turtles. Moreover, CPH replaced 60 g/kg FMP can increase intestine digestive enzymes activities and improve intestinal development.  相似文献   

8.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

9.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

10.
A sixty‐day feeding trial was conducted to determine the ascorbic acid (AA) requirement for growth of striped catfish, Pangasianodon hypophthalmus juveniles. Seven iso‐nitrogenous and iso‐energetic (370 g protein per kg and 19.6 MJ/kg) purified diets were prepared with different levels of ascorbic acid such as control (0), T1 (17.5), T2 (35), T3 (70), T4 (175), T5 (350) and T6 (700) mg ascorbic acid (L‐ascorbyl‐2‐polyphosphate) equivalent per kg diet. Fish with a mean body weight of 3.2–3.4 g were stocked (fifteen fish per tank) in triplicates following a completely randomized design. Each group was fed to satiation twice a day for 60 days. Significant differences were observed in growth, survival, body composition and metabolic enzymes activities with different dietary ascorbic acid levels. Maximum weight gain, specific growth rate (SGR) and protein efficiency ratio (PER) were found in fishes fed with 35 mg AA per kg diet, supported by best feed conversion. Fish fed a diet containing vitamin C had the highest activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) compared to those fed with vitamin C‐depleted diets. In this study, based on using broken‐line regression analysis, the dietary vitamin C requirement for growth of P. hypophthalmus juveniles was estimated to be in the range of 46–76 mg AA per kg, depending on the criterion used, growth and liver storage. Our results will be helpful for the formulation of cost‐effective ascorbic acid incorporated diets for striped catfish, P. hypophthalmus.  相似文献   

11.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate‐to‐lipid (CHO:L) ratios on growth, liver and muscle glycogen content, haematological indices, and liver and intestinal enzyme activity of juvenile grouper (Epinephelus coioides). Five isonitrogenous (496.0 g/kg protein) and isoenergetic (21.6 KJ/g gross energy) diets with varying CHO:L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4) and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 10.02 ± 0.1 g) for 8 weeks. Results showed that the weight gain rate, specific growth rate and protein efficiency ratio (PER) of juvenile grouper increased first and then decreased with the increase in CHO:L ratio, reaching a maximum value in the D4 (CHO:L = 4.24) diet. The trend for the feed conversion ratio was opposite to the PER. Along with the diet CHO:L ratios, the apparent digestibility coefficients (ADC) of crude lipid and energy for the juvenile groupers decreased gradually, while the ADC of dry matter, liver and muscle glycogen level increased gradually. Total protein, triglycerides and cholesterol in serum were all maximized in the D4 diet and glucose in the D5 (CHO:L = 8.51) diet. Digestive enzyme activity in the intestine was significantly affected by dietary CHO:L ratio. Liver hexokinase, phosphofructokinase and glucose‐6‐phosphate dehydrogenase activity increased significantly as CHO:L ratio increased. Liver lysozyme and acid phosphatase activity in the groupers fed the D3 (CHO:L = 2.33) diet was significantly higher than that of other diets. Liver fructose‐1,6‐bisphosphatase and alkaline phosphatase activity reached a maximum value in the D4 diet and was significantly higher than that in the D1 diet. Taking the above results together, it can be concluded that an optimal dietary CHO:L ratio of 2.33 is suitable for grouper culture concerning growth performance and health.  相似文献   

12.
This study investigated the effects of dietary lysolecithin on growth performance, feed utilization and metabolic responses of channel catfish (Ictalurus punctatus). Fish (initial weight: 14.77 ± 0.45 g) were randomly fed one of five practical diets supplemented with graded levels of lysolecithin (0, 125, 250, 375 and 500 mg/kg) in quadruplicate groups for 10 weeks. Results showed that no significant differences in weight gain, condition factor and viscerosomatic index among all the treatments. Fish fed diet supplemented with 250 mg/kg lysolecithin had significantly decreased feed conversion ratio and significantly increased protein efficiency ratio compared to that fed the control diet. The group with 250 mg/kg of dietary lysolecithin had higher protein and lower lipid contents in the whole body, and lower lipid content in the liver than those in the control group. Groups supplemented with 250–500 mg/kg of dietary lysolecithin had significantly higher gastric and intestinal lipase activities than the control group. Dietary lysolecithin at the level of 250 mg/kg significantly increased the activities of Na+, K+‐ATPase, alkaline phosphatase, total antioxidative capacity, total superoxide dismutase, glutathione peroxidase and catalase and significantly decreased the content of malondialdehyde compared to the control diet. In conclusion, dietary supplementation of lysolecithin could confer benefits of feed utilization, body composition and antioxidative capacity of channel catfish.  相似文献   

13.
Seven isonitrogenous and isolipidic diets containing fish meal (FM) protein replaced by corn gluten meal (CGM) protein at 0% (the control, C0), 10% (C10), 20% (C20), 30% (C30), 40% (C40), 50% (C50) and 60% (C60) were fed to juvenile Pseudobagrus ussuriensis for 8‐weeks to evaluate the effects of FM protein replaced by CGM protein on growth, feed utilization, nitrogen (N) and phosphorus (P) excretion and IGF‐I gene expression of juvenile P. ussuriensis. The results showed that the replacement level up to 40% did not affect the weight gain, specific growth rate (SGR), feed intake and protein efficiency ratio, whereas these parameters were depressed by further replacement level. Apparent digestibility coefficients (ADC) of dry matter, crude protein significantly decreased, but ADC of phosphorus significantly increased with increasing dietary CGM levels (< .05). Fish fed diets with FM protein replaced by CGM protein led to an increase in nitrogen excretion, but led to a reduction in phosphorus excretion. No significant differences were observed in alpha‐amylase and lipase activities of intestine (> .05). The lowest pepsin activity was found in C60 group. Fish fed diet C40, C50 and C60 had significantly lower serum lysozyme activity compared with fish fed diet C0 (< .05). The lowest plasma alkaline phosphatase activity and the highest plasma alanine aminotransferase and aspartate aminotransferase activities were observed in C60 group. Fish fed diet C60 had significantly lower hepatic IGF‐I gene expression compared with fish fed diet C10 (< .05). Broken‐line model analysis based on SGR against the CGM substitution level indicated that the appropriate replacement level was 37.7%.  相似文献   

14.
The study was to investigate the effects of garlic (Allium sativum) powder on feeding attraction activity, growth performance and digestive enzymes of juvenile Japanese seabass, Lateolabrax japonicus (initial weight: 29.82 ± 0.24 g). Six concentration gradients (0, 5, 10, 15, 20 and 25 g/kg diets) were formulated for luring and feeding experiment. The results showed a clear attractive trend of garlic powder for L. japonicus. A 28‐day feeding experiment indicated garlic could reduce the feed conversion ratio (FCR) (p < .05). The content of the body crude lipid was significantly increased at 10–15 g/kg diet (p < .05). Digestive enzyme activities including trypsin, amylase (AMS) and lipase (LPS) in the intestine were the highest at 10 g/kg diet (p < .05). Overall, garlic powder provides a promising and effective method for Japanese seabass healthy culture by improving fish growth and digestive ability. The results of this research suggested the additive suitable dosage of garlic powder was about 10 g/kg diet.  相似文献   

15.
This study evaluated the effects of dietary γ‐aminobutyric acid (GABA) on the growth performance, serum biochemical indices and antioxidant status of pharaoh cuttlefish, Sepia pharaonis. Cuttlefish were cultured in open‐culturing cement pool systems for 8 weeks. Six practical diets supplemented with graded levels of GABA (0, 20, 40, 60, 80 and 100 mg/kg) were formulated. Each diet was randomly assigned to triplicate groups of 60 cuttlefish (mean weight: 10.33 g), the cuttlefish were fed two times per day to apparent satiation. The results showed that the specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) significantly increased with dietary GABA supplementation (p < .05). The survival rate (SR) and protein content in muscle significantly increased when 58.9 mg/kg GABA supplied. Moreover, the nitric oxide (NO) content and acid phosphatase (ACP) activity in serum were significantly increased with dietary GABA supplementation (p < .05), while the activity of aspartate aminotransferase (AST) in serum decreased significantly when supplied with GABA at 58.9 mg/kg (p < .05). In addition, dietary GABA improved antioxidation activity by significantly increasing the activities of superoxide dismutase (SOD) and catalase (CAT) but decreasing malondialdehyde (MDA) levels in the liver and gill (p < .05). On the basis of the quadratic regression analysis of FE, the optimum content of dietary GABA in S. pharaonis was estimated to be 55.3 mg/kg. The findings of this study demonstrated that dietary GABA had a positive effect on the growth performance, serum biochemical indices and antioxidant status of S. pharaonis.  相似文献   

16.
In recent years, more and more attentions have been paid to the development and application of probiotics in aquaculture, and viable probiotics have been extensively studied, while rare information was available about inactivated probiotics in aquaculture. Therefore, in this study, a feeding trial was designed to investigate the effect of dietary supplementation of heat‐inactivated probiotic Bacillus clausii DE5 on growth performance, immune response and key immune genes expression in head kidney and intestine in grouper Epinephelus coioides. Fish were fed for 60 days with control diet (C) and two experimental diets containing 1.0 × 108 CFU/g live (T1) and heat‐inactivated (T2) B. clausii DE5, respectively. The probiotic treatments did not affect the final weight, weight gain (WG) and specific growth rate (SGR) of E. coioides at days 30 and 60 (> .05), while both heat‐inactivated and live B. clausii DE5 significantly decreased the feed intake and feed conversion ratio (FCR) at day 60 (< .05). Serum lysozyme activity and complement C3 level in the two probiotic treatments were significantly higher than those in the control (< .05). The lysozyme activity and complement C3 level at day 60 were significantly higher than those at day 30 (< .05), while no significant interaction effect between diet and administration date was observed. Moreover, the heat‐inactivated B. clausii DE5 significantly improved the expression of TLR5, pro‐inflammatory cytokines (IL‐8 and IL‐1β) and TGF‐β1 in head kidney and intestine (< .05), while the live probiotic did not show any significant effect on the expression of these key immune‐related genes in head kidney and intestine. These results indicate that dietary supplementation of heat‐inactivated B. clausii DE5 effectively improved feed utilization and both the local and systemic immune responses of E. coioides.  相似文献   

17.
Two feeding trials were conducted to determine the optimal dietary carbohydrate to lipid (CHO:L) ratio for juvenile and grower rockfish. Triplicate groups of juvenile (initial mean weight 3.6 g) and duplicate groups of grower (initial mean weight 166 g) were fed the five isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets with the different CHO:L ratios (0.4–5.6 g:g) for 8 weeks respectively. The survival of juvenile and grower was above 93% and was not affected by the dietary CHO:L ratios. Weight gain of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 was significantly higher than that of the fish fed diets with CHO:L ratios of 2.8 and 5.6 (P<0.05). The feed efficiency and protein efficiency ratio of juvenile fed the diet with CHO:L ratio of 5.6 were the lowest among all groups (P<0.05). The daily feed intake of juvenile fed the diet with a CHO:L ratio of 5.6 was significantly higher than that of the other groups (P<0.05). The condition factors of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 were significantly higher than that of 5.6 (P<0.05). The crude lipid content of whole body, liver and viscera of juvenile decreased as the dietary CHO:L ratio increased, and the opposite was found for the moisture content. Weight gain, feed efficiency, daily feed intake, protein efficiency ratio and condition factor of grower were not affected by the dietary CHO:L ratio. Hepatosomatic and viscerasomatic indexes of grower were significantly influenced by dietary CHO:L ratio (P<0.05). Significant differences were observed in the lipid content of whole body and viscera of grower. Dietary CHO:L ratios significantly affected the major fatty acid composition of whole body in both juvenile and grower. The contents of 18:2n‐6 and 18:3n‐3 linearly decreased as the dietary CHO:L ratio increased, whereas the 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents increased. Based on growth, feed efficiency and body composition, the optimal dietary CHO:L ratio was 1.6 for juvenile rockfish fed isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets, and starch could partially replace lipids in the diets with CHO:L ratios ranging from 0.4 to 5.6 for grower.  相似文献   

18.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

19.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

20.
A feeding experiment was conducted in a closed recirculating system to evaluate the effects of freeze‐dried spheroplasts prepared from Pyropia yezoensis (Ueda) on feed intake, growth and biochemical composition of sea cucumber, Apostichopus japonicus (Selenka). Pyropea spheroplasts (PS) were prepared through enzymatic treatment to break down the complex mixture of polysaccharides cell walls that might be easier for growth energy partitioning. Sea cucumbers were fed‐formulated diets with 10 (Diet 1), 30 (Diet 2) and 50 g/kg (Diet 3) inclusion level of PS. A diet without PS was used as a control (Diet 4). The experiment was conducted for 6 weeks maintaining water temperature 15 ± 1°C, photoperiod 18:06 hours (D:L). Feed was supplied ad‐libitum at 16.00 h once in a day, and the remaining feed and faeces were removed in the next day. Results showed that the highest growth was observed in the 50 g/kg PS diet compared to other treatments. Total weight gain, mean weight gain, net yield, protein efficiency ratio (PER) and protein gain (%) were significantly higher in the 50 g/kg PS diet (p < .05). A significantly higher percentage of energy was allocated for growth in the 50 g/kg PS diet. The highest specific growth rate and feed conversion efficiency (p < .05) were observed in the higher percentage of PS diet. Both the growth performance and biochemical analysis showed that superior growth was observed with increasing levels of PS in the diet. We infer that PS can be used as a new, cheaper feed ingredient in the formulated diet of A. japonicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号