首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
磷肥用量对土壤速效磷及玉米产量和养分吸收的影响   总被引:15,自引:4,他引:11       下载免费PDF全文
通过两年田间肥料定位试验,研究北疆灰漠土区不同磷肥用量对土壤速效磷含量以及玉米生长和养分吸收的影响。结果表明,不施磷肥或施磷量较低(75 kg/hm2)时,土壤速效磷含量显著降低;施磷量为150 kg/hm2时土壤速效磷含量基本维持平衡;施磷量为300 kg/hm2时土壤速效磷在0~40 cm土壤积累明显。施磷肥可显著增加玉米干物质量,施磷量超过150 kg/hm2干物质量增加不明显。玉米植株的氮素和磷素积累量随施磷量增加而显著增加,磷肥对玉米植株磷素养分的分配影响不大,但可显著促进氮素向子粒的转运,氮素在子粒的分配比例显著增加。施磷肥可显著提高玉米产量,施磷量为150 kg/hm2可维持土壤速效磷平衡并获得高产,是该区玉米的适宜磷肥用量。  相似文献   

2.
聚磷酸铵溶液在春玉米上的施用效果研究   总被引:1,自引:0,他引:1  
通过在东北典型黑土上设置聚磷酸铵新型液体氮磷复合肥溶液的不同用量田间试验,研究其对玉米产量、磷肥利用效率及农田磷素盈余状况的影响,明确聚磷酸铵溶液在玉米施用上的最佳施用量。两年试验结果表明,磷养分投入量在75 kg/hm~2时,玉米产量、干物质量及磷素积累量均处于较高水平,两年的磷肥利用率分别为25.0%和24.5%;当施磷量超过75 kg/hm~2时,产量不再显著提升,磷肥利用率逐渐降低。试验期间内,磷养分投入量在75和90 kg/hm~2处理的土壤磷盈余为分别为-19 kg/hm~2和2 kg/hm~2。通过综合分析两年的玉米产量、肥料利用率和农田磷素盈余量情况,确定聚磷酸铵溶液最佳施用量为75~90 kg/hm~2,可满足当季玉米的高产养分需求,减施磷肥达15%~20%,达到减肥增产增效的目的。  相似文献   

3.
降水量与施磷量对黑土区玉米产量及磷素吸收利用的影响   总被引:2,自引:0,他引:2  
在自然降水条件下采用滴灌补水措施,研究不同降水量及施磷量对黑土区玉米产量、磷素吸收积累及磷肥利用率的影响。结果表明,降水量及施磷量的增加会增加玉米植株干物质量的积累,进而促进玉米产量的形成。施磷量较降水量对玉米产量的影响更为显著,适量的降水量与施磷量有利于玉米产量的增加。各处理中以W3(自然降水+200 mm)、P3(施磷220 kg/hm~2)处理产量最高,达13 914 kg/hm~2。各处理随施磷量的增加,磷肥利用率降低,随降水量的增加磷肥利用率增加。玉米植株磷素积累在同一降水条件下,随施磷量的增加呈先增加后减小的趋势。适磷条件下,适宜降水量可显著提高玉米植株磷素积累量。W3(自然降水+200 mm)、P2(施磷110 kg/hm~2)处理为最优处理,当年降水量为508 mm,玉米产量可达13 119 kg/hm~2;磷肥利用效率最高,达19.7%。  相似文献   

4.
沿海地区夹砂土上水稻磷肥施用指标初探   总被引:1,自引:0,他引:1  
采用田间试验的方法,研究了不同施磷水平对土壤有效磷及水稻产量的影响。结果表明,在沿海地区夹砂土上,水稻的产量并不随着施磷量的增加而增加,水稻施用磷肥的土壤有效磷临界值为24.2~24.5mg/kg,磷系数为0.52kg/667m2。  相似文献   

5.
采用田间试验的方法,研究磷肥施用量相同的条件下,磷肥不同施用时期及分配比例对吉林省西部超高产玉米产量及磷素吸收积累的影响。结果表明,不同施磷方式对玉米产量和磷素吸收积累量有一定影响。施磷量一定的条件下,在玉米生育后期追施磷肥可有效提高产量,其中拔节期和喇叭口期均追肥处理产量达到13 706 kg/hm2,较一次性基施处理高0.82%;不同生育期各器官磷素积累量也相对较高,收获时期植株磷素吸收积累量为126.4 kg/hm2,高于其他各处理。从成熟期玉米植株磷素含量分配比例来看,拔节期和喇叭口期均追肥处理收获时期子粒中磷素含量占植株总磷素含量的68.99%,其他处理均超过70%;除子粒外其余各器官磷素含量所占比例均较高。本试验条件下,在玉米生育后期追施磷肥的施磷方式可有效提高玉米产量,但相对于磷肥一次性基施的方式差异不显著。  相似文献   

6.
通过盆栽试验及Hedley土壤磷素分组法研究了海南省玄武岩发育砖红壤上施用不同磷源对橡胶树幼苗生长的影响及土壤磷素组分变化。磷肥处理分别为不施磷处理、施用昆阳磷矿粉100 mg/kg(以全P计,下同)、施用昆阳磷矿粉250 mg/kg和施用普通过磷酸钙100 mg/kg。结果表明:施用磷矿粉和普通过磷酸钙均显著增加了橡胶树幼苗干物重、株高、茎粗和吸磷总量,但高磷矿粉处理和普通过磷酸钙处理橡胶树幼苗叶片磷含量显著降低;高磷矿粉处理取得了与普通过磷酸钙相当的肥效;磷矿粉施用后,土壤树脂提取态磷(Resin-P)、碳酸氢钠提取态无机磷(NaHCO_3-Pi)、氢氧化钠提取态无机磷(NaOH-Pi)、盐酸提取态磷(HCl-P)和残余态磷(Residual-P)等组分含量均显著增加,但碳酸氢钠提取态有机磷(NaHCO_3-Po)和氢氧化钠提取态有机磷(NaOH-Po)不受施磷影响;干物质重和吸磷总量均与土壤Resin-P、NaHCO_3-Pi和Na OH-Pi呈显著的正相关关系;磷矿粉施用11个月后,平均33.1%磷矿粉溶解在土壤中,平均43.5%的磷矿粉残留在土壤Residual-P组分中。为改善玄武岩发育砖红壤上有效磷及橡胶树磷素营养状况,应选择施用高活性磷矿粉以降低磷矿粉颗粒被大量包被的风险。  相似文献   

7.
为给高磷土壤小麦磷管理提供依据,在河南省温县速效磷为49.1 mg·kg-1的土壤上开展2年田间试验,设置5个施磷量水平(0、45、90、135、180 kg P2O5·hm-2),研究施磷量对小麦产量、干物质积累、磷素吸收利用及土壤磷素平衡的影响。结果表明,随施磷水平的提高,小麦产量呈先增后减趋势,且两年分别在90和135 kg·hm-2施磷量下最高。90 kg·hm-2施磷处理显著提高小麦干物质积累量,施磷量进一步增加时干物质累积量无显著变化,叶片等各器官均表现出相似趋势。第一年小麦花后干物质转运量以90 kg·hm-2施磷处理最高,转运效率为36.7%;第二年花后干物质转运量以135 kg·hm-2施磷处理最高,转运效率为30.9%。小麦开花期和收获期磷素积累量均以90 kg·hm-2施磷处理最高,施磷处理收获期吸磷量比不施磷处理增加14.5%~44.6%,开花后各器官磷素转运量和转运效率以90 kg·hm-2施磷处理相对较高。磷肥利用率随着施磷量增加呈下降趋势,90 kg·hm-2施磷处理下磷肥利用率相对较高,磷肥偏生产力、农学效率、表观回收率两年平均为130.8 kg·kg-1、 10.6 kg·kg-1、23.9%。磷肥用量高于90 kg·hm-2时,土壤磷素呈盈余状况;在90 kg·hm-2施磷水平下土壤磷素盈余0.1~17.3 kg·hm-2;在施磷135 kg·hm-2和180 kg·hm-2时,土壤磷素盈余量分别为32.1~77.5和101.5~115.3 kg·hm-2。这说明,在土壤磷素肥力较高的情况下,推荐施磷量90 kg·hm-2,可促进干物质和磷素积累,提高小麦产量,同时维持合理的磷肥利用率及磷素平衡状况。  相似文献   

8.
湖北省油菜磷肥施用效果 与土壤速效磷分级标准研究   总被引:7,自引:1,他引:7  
近两年在湖北省油菜主产区布置27个油菜大田施磷试验。试验统计结果表明,油菜施用磷肥具有明显 的增产和增收效果, 25 个试验施磷增产效果在5%以上,施磷增产油菜籽产量15 ~1 783kg/hm2 ,平均增产量 558kg/hm2 ,平均增产率为53. 0% ,每千克P2O5 平均增收油菜籽6. 2kg;施磷的纯利润平均为831. 6元/hm2 ,产投比 平均为3. 10。油菜施磷增产幅度与土壤速效磷含量呈极显著负相关。按照不施磷对照处理产量占施磷处理产量 的50%、75%和90%作为判断土壤缺磷标准,则土壤速效磷极度缺乏、严重缺乏和缺乏的指标分别为9. 9mg/kg、 14. 3mg/kg和20. 2mg/kg;以施磷产投比2. 0和1. 0作为土壤缺磷标准时,土壤速效磷严重缺乏和缺乏的指标分别 为16. 2mg/kg和20. 2mg/kg。  相似文献   

9.
福建省平和县蜜柚园磷肥使用现状及土壤磷素平衡研究   总被引:3,自引:0,他引:3  
明确磷肥施用及土壤磷素状况,对于指导磷肥科学施用,提高磷肥利用效率具有重要意义。通过农户调研和土壤调查的方法,获得369个农户的磷肥施用现状及29个果园的土壤剖面样品,分析平和县蜜柚园磷肥施用现状及土壤磷素状况。结果表明:平和县蜜柚园磷肥量平均为P_2O_5 971 kg/hm~2,96%的农户磷肥投入量超过P_2O_5 400 kg/hm~2,磷肥投入量与蜜柚产量无明显相关关系;三元复合肥和二铵是主要磷素来源;磷肥的平均盈余量为P_2O_5 954 kg/hm~2,不同乡镇间磷肥用量以及磷素平衡状况变异较大,小溪镇和坂仔镇盈余量相对较小;蜜柚园0~20 cm、20~40 cm、40~60 cm土层的土壤有效磷含量分别为639 mg/kg、385 mg/kg、172 mg/kg,不同土壤剖面有效磷含量存在明显的相关关系。因此,合理控制磷肥用量,选择低磷的配方,减少磷素过量盈余和淋失,提高磷肥利用效率对平和蜜柚产区可持续发展具有重要意义。  相似文献   

10.
湖北省油菜磷肥效应及推荐用量研究   总被引:8,自引:1,他引:7  
通过20个田间试验研究湖北省油菜主产区磷肥效应和适宜用量。结果表明,适量施用磷肥对油菜具有明显的增产增收效果,19个试验施磷比不施磷对照增收油菜籽75~1117kg/hm2,平均增产489kg/hm2;施磷增产4.3%~62.6%,平均增产率为26.4%;施磷纯利润平均为1417元/hm2,产投比平均达6.08;磷肥偏生产力和农学利用率平均分别为41.2kg/kg P2O5和7.3kg/kg P2O5。根据肥料效应方程,在当前生产条件下,油菜生产的磷肥最佳经济用量平均为67.8kg P2O5/hm2,推荐幅度为0~114.3kg P2O5/hm2。土壤有效磷含量与油菜磷肥最佳推荐用量呈极显著负相关性(r﹦﹣0.7586**,n﹦18),根据土壤有效磷含量(x,单位为mg/kg)水平,湖北省目前油菜生产适宜用磷量(y,单位为kg/hm2)可通过公式y﹦161.43﹣36.436Ln(x)求得。  相似文献   

11.
Intensive use of chemical fertilizer for crops may be responsible for nitrogen and phosphate accumulation in both groundwater and surface waters. The return flow polluted by nutrients not only results in the limitation of water reuse goals but also creates many environmental problems, including algal blooms and eutrophication in neighboring water bodies, posing potential hazards to human health. This study is to evaluate the N-fertilizer application of terraced paddy fields impacting return flow water quality. Water quality monitoring continued for two crop-periods around subject to different water bodies, including the irrigation water, drainage water at the outlet of experimental terraced paddy field, and shallow groundwater were conducted in an experimental paddy field located at Hsin-chu County, Northern Taiwan. The analyzed results indicate that obviously increasing of ammonium-N (NH4 +-N) and nitrate-N (NO3 ?-N) concentrations in the surface drainage water and ground water just occurred during the stage of basal fertilizer application, and then reduced to relatively low concentrations (<0.1 mg/l and <3 mg/l, respectively) in the remaining period of cultivation. The experimental results demonstrate the potential pollution load of nitrogen can be reduced by proper drainage water control and fertilizer application practices.  相似文献   

12.
稻田土壤杂草种子库研究   总被引:20,自引:2,他引:18  
对江苏省仪征市连年稻麦两熟轮作稻田土壤杂草种子库中杂草种类进行了考查。结果表明, 有11 科22 种杂草的种子主要分布在0~10 cm 土层内。同时, 阐述了土壤种子库杂草种子的来源, 因水分、湿度、光照等自然因素和耕作、人工除草等人为因素, 杂草种子本身的完熟度等综合因素造成了土壤杂草种子库中杂草种子活力的损失与累积, 以及杂草种子萌发与土层深度、水分等的关系, 初步探明了水旱轮作对稻田土壤杂草种子库的影响, 提出了减少杂草种子库种源的对策。  相似文献   

13.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

14.
Two water management practices, an intermittent irrigation scheme using automatic irrigation system (AI) and a spillover-irrigation scheme (SI), were compared for the fate and transport of commonly used herbicides, mefenacet (MF) and bensulfuron-methyl (BSM) in experimental paddy plots. Maximum mefenacet concentrations in paddy water were 660 and 540 μg L−1 for AI and SI plot, respectively. The corresponding values for bensulfuron-methyl were 46.0 and 42.0 μg L−1. Dissipation of the herbicides in paddy water appeared to follow the first-order kinetics with half-lives (DT50) of 1.9–4.5 days and DT90 (90% mass dissipation) of 7.8–11.3 days. The AI plot had no surface drainage, hence no herbicide was lost through paddy-water discharge. However, SI plot lost about 38 and 49% of applied mefenacet and bensulfuron-methyl, respectively. The intermittent irrigation scheme using automatic irrigation system with a high drainage gate was recommended to be a best management practice for controlling the herbicide losses from paddy fields. The paddy field managed by spillover-irrigation scheme may cause significant water and herbicide losses depending on the volume of irrigation and precipitation. The water holding period after herbicide application was suggested to be at least 10 days according to the DT90 index.  相似文献   

15.
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.  相似文献   

16.
Japanese farmers manage their irrigation water based on their past experiences and preferences, considering such factors as weather and available water (hereafter defined as empirical water management). They elaborately control the intake and drainage rates of their own paddy fields to maintain optimal ponding depths. But these well-managed systems will drastically change because of the decreasing number of farmers. Therefore, it is necessary to clarify if the optimal ponding depth will be maintained within the limits of traditionally-allowed water intake rate from the main river. The first objective of this study was the quantification of actual water use in the paddy fields, resulting from the farmers water management on the basis of their experience. The significance of the present water intake rate under empirical water management was studied for a paddy field command area of about 230 ha. Water intake rates and the water requirements of the whole area were investigated by measuring the flow rate at 17 points of irrigation and drainage canals. Characteristics of the farmers empirical water management were investigated by measuring the hourly changes in inflow and outflow rates for a sub-area using an automatic measurement system, and an inferential method of determining water management patterns for the paddy fields was proposed. The newly-proposed inferential method was introduced in the tank model, which expresses the characteristics of water management in the command area. The Shuffled Complex Evolution Algorithm (SCE-UA) method was used for optimizing the model parameters. It was proven that the model accuracy improved when the farmers empirical water management was taken into account. The optimal amount of water to be applied to the command area was quantified by the simulation. The second objective was to predict the effect of the decreasing number of farmers on future water use conditions. The simulated result indicates the difficulty of maintaining optimal ponding depth for the whole command area when the farmers empirical water management is not maintained. In other words, results indicated that efficient water use requires an automatic water management system or a new pipeline system to replace the farmers present empirical water management.  相似文献   

17.
Delivery management water requirement (DMWR) is the use of bypass water in paddy field irrigation to help maintain desired water levels in irrigation canals and to distribute water to paddy plots in a uniform manner. Diverted irrigation water (DIW), DMWR, and the DMWR/DIW ratio were investigated for concrete lined irrigation ditches with large-sized paddy plots (100 m×100 m) during irrigation periods (May to mid-September). DIW and DMWR were measured at 5- to 10-day intervals at the inlets and outlets of irrigation ditches on stable water supply days. The mean DMWR/DIW ratios in irrigation ditches L1 and L2 over 3 years were 36 and 34%, respectively. The mean DMWR/DIW ratios displayed month-to-month and year-to-year variation. The monthly mean DMWR/DIW ratios were highest (55 and 71%) in June and lowest (<20%) in August and September. The annual mean DMWR/DIW ratios during a dry year markedly decreased to 11%, compared with 42% in other years. The decrease was due to the small DIW and farmers water management to maximize capture of limited irrigation water during the drought. The DMWRs in May and June were significantly (p<0.01) correlated with the DIWs, indicating that high DMWR in May and June are attributed to excessive DIW.  相似文献   

18.
本文阐述了咸宁苎麻产业经营的现状,发展的有利条件,制约因素和进一步发展苎麻产业的构思,以及实现这一构思采取的几项举措:扩大生产规模;加强优质原料基地及龙头企业的建设;提高品牌档次,促进工业带动农业,集科、工、农、贸为一体,走产业经营的发展道路.  相似文献   

19.
亚麻种质创新工作采用外源总体DNA导入,Co60-γ射线处理种子、植株以及利用雄性核不育材料进入转育等方法创造新类型、新材料,提供给育种家,培育出一批优异亚麻新品种,促进了亚麻生产的飞速发展.随着新的生物技术和信息技术的突破,对今后种质创新工作进行展望.  相似文献   

20.
A field experimental study was performed during the growing season of 2001 to evaluate water and nutrient balances in paddy rice culture. Three plots of standard fertilization (SF), excessive fertilization (EF, 150% of SF), and reduced fertilization (RF, 70% of SF) were used and the size of treatment plot was 3,000 m2, respectively. The hydrologic and water quality was field monitored throughout the crop stages. The water balance analyses indicated that approximately half (47–54%) of the total outflow was lost through surface drainage, with the remainder consumed by evapotranspiration. Statistical analysis showed that there was no significant effect of fertilization rates on nutrient outflow through the surface drainage or rice yield. Reducing fertilization of rice paddy may not work well to mitigate the non-point source nutrient loading in the range of normal farming practices. Instead, the reduction in surface drainage could be important to controlling the loading. Suggestive measures that may be applicable to reduce surface drainage and nutrient losses include water-saving irrigation by reducing ponded water depth, raising the weir height in diked rice fields, and minimizing forced surface drainage as recommended by other researchers. The suggested practices can cause some deviations from conventional farming practices, and further investigations are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号