首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Water management methods regulate water temperature in paddy fields, which affects rice growth and the environment. To understand the effect of irrigation conditions on water temperature in a paddy field, water temperature distribution under 42 different irrigation models including the use of ICT water management, which enables remote and automatic irrigation, was simulated using a physical model of heat balance. The following results were obtained: (1) Irrigation water temperature had a more significant effect on paddy water temperature close to the inlet. As the distance from the inlet increased, the water temperature converged to an equilibrium, which was determined by meteorological conditions and changes in water depth. (2) Increasing the irrigation rate with higher irrigation water amount increased the extent and magnitude of the effects of the irrigation water temperature. (3) When total irrigation water amount was the same, increasing the irrigation rate decreased the time-averaged temperature gradient effect over time across the paddy field. (4) Irrigation during the lowest and highest paddy water temperatures effectively decreased and increased the equilibrium water temperature, respectively. The results indicate that irrigation management can be used to alter and control water temperature in paddy fields, and showed the potential of ICT water management in enhancing the effect of water management in paddy fields. Our results demonstrated that a numerical simulation using a physical model for water temperature distribution is useful for revealing effective water management techniques under various irrigation methods and meteorological conditions.

  相似文献   

2.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

3.
This study quantifies the effects of paddy irrigation water on groundwater recharge. A numerical model of groundwater flow was conducted using MODFLOW in a 600 ha study site in an alluvial plain along the Chikugo River, located in southwestern Japan. To specify the surface boundary condition, data on the land use condition stored in the GIS database were transferred into a numerical model of groundwater flow. The simulated results were consistent with the observed yearly changes of groundwater level. Thus, it was appropriate to use the model to simulate the effects of paddy irrigation on groundwater. To quantify these effects, the groundwater level was simulated during the irrigation period when all farmlands in the study site were ponded. In this situation, the groundwater level was 0.5 to 1.0 m higher, the ground water storage 20% larger, and the return flow of the groundwater to the river 50% larger than in the present land use condition.  相似文献   

4.
This research is to construct a water balance model to estimate the amount of return flow in an irrigation system. A simple computation framework for the model was established to include various irrigation applications in cropping seasons. The model was able to estimate evapotranspiration, deep percolation into groundwater aquifer, and return flow. Return flow can be split into two parts, which are surface and subsurface return flows. The water balance model was then applied at the irrigation system (rotational block No. 11-2 of five paddy field units) which is operated by the Taoyuan Irrigation Association in Taiwan as an example. Two study cases were simulated, in which one was for using return flow and the other one was for using no return flow. The study period for the model simulations is the first rice cropping term in 2010 which was from February 16 to July 10. As a result, return flows calculated by the model were 27, 27, 34, and 39% of outflows for sandy loam, sandy clay, clay loam, and light clay soil, respectively. Irrigation water at the downstream field unit with use of return flow was supplemented by the upstream field units, and the amount is 5?C8% of irrigation water for using no return flow. Furthermore, it can be seen from the simulations that increases in irrigation water provide increases of return flow. Increases of irrigation water result in slight increases of subsurface return flow, while increases of irrigation water cause nearly none of change in deep percolation.  相似文献   

5.
The subject of this study is water management in low-lying paddy fields. The objective of this study is to quantify the water requirement, and estimate an appropriate volume and facilitate management of irrigation water in areas where it is difficult to estimate the flow rate continuously. A field observation was conducted at a 14-ha study site located in the Kuwabara area, Fukuoka City, southwest of Japan, to evaluate water management conditions in the command area of the reservoir. This site near the reservoir was selected, because it was impossible to understand the water supply situation in the entire command area. The farmers in this region have been unable to retain sufficient irrigation water. The observation results indicate that the water depth fluctuates widely in every irrigation canal. The canals are frequently empty because rotational irrigation is conducted by water managers; this makes quantifying the flow rate in the irrigation canal very difficult. To quantify the water requirement, an improved tank model was introduced. The accuracy of the model was examined by comparing the observed and calculated ponding depths at a paddy field. The simulation results agreed with the observed data. Using this model, water management for the reduction of water managers’ labor was simulated. Simulation results indicated that rotational irrigation effectively reduces labor and saves irrigation water.  相似文献   

6.
This paper introduces an irrigation system developed in the floodplain of a lake and studies the water management technique of the irrigation system by estimating the total water balance of the whole system. The system is characterized by a reservoir combined with a dike system in the floodplain of the Tonle Sap Great Lake and an irrigation system. Two main models are used for calculating the total water balance. The first model is the water balance of the reservoir. The inputs to the model are water level of the reservoir, precipitation, lake evaporation, infiltration, and area–volume curve of the reservoir. The outputs are inflow and outflow of the reservoir. The supply from the reservoir to paddy fields is computed from the outflow. The second model is the water balance of paddy fields, based on which the water requirement in paddy fields is derived. The reference evapotranspiration needed to calculate the water requirement is simulated for monthly time series using the FAO Penman–Monteith model. Since there is no drainage network in the irrigation system, surface drainage and runoff are not included in the calculation of the water balance, and seepage is considered negligible in the flat floodplain area. The evapotranspiration, rice variety, soil type and irrigated area are used to simulate water consumption in paddy fields. Finally, the two models are connected to produce the total water balance from the reservoir to paddy fields. The total outflow from the reservoir is estimated and the total water consumption for dry season cultivation is also determined. Finally, the efficiency of the whole system is examined.  相似文献   

7.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

8.
The Mae Lao Irrigation Scheme is one of the largest irrigation projects in Northern Thailand. According to the field reconnaissance, water shortage usually occurs during the dry season. And it is very difficult to equally distribute available water to the paddy fields from the upstream to the downstream parts of the system. To understand and identify the causes of the problems, the measurement of water level and flow rate along all canals may be effective. However, it is not easy to achieve this in such a large-scale irrigation system. Thus, the numerical simulation becomes the second option. The objective of this study is to identify and quantify the real water shortage causes by developing an Unsteady Irrigation Water Distribution and Consumption model which can simulate the water movement and consumption in the whole irrigation system. The beneficial area of the right main canal is modeled based on the physical aspect of the system. The components of the model consist of canal networks, control structures, and paddy fields. A canal is divided into several portions called reach. The Saint-Venant equations are applied to describe the unsteady water movement in each reach. Flow movement at the control structure is expressed by the boundary condition. The paddy fields are modeled to make paddy block and connected to each reach. The water consumption in each paddy block is estimated by Paddy Tank model. The numerical model is successfully developed showing the ability to simulate the water movement and consumption properties in this irrigation system.  相似文献   

9.
A field experiment was performed at two Korean research sites to evaluate water and nutrient behavior in paddy rice culture operations for 2 years. One site was irrigated with groundwater, whereas the other site was irrigated with surface water. Both sites received average annual rainfall of about 1,300 mm, and about 70–80% of it was concentrated during July–September coinciding with rice growing season. Although most of the nutrient outflow was attributed to plant uptake, nutrient loss by surface drainage was substantial. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient behaviors in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and practical planning model that could be used to evaluate nutrient loading from paddy rice fields alone or in combination with other complex watershed models. Further validation might be required for general application of the PADDIMOD to the simulation of paddy rice fields with various agricultural environments.  相似文献   

10.
四川丘陵季节性干旱区水稻田间耗水量研究   总被引:1,自引:0,他引:1  
以Ⅱ优7号为供试水稻品种,通过精确计量稻田进出水量,研究了四川典型丘陵地区稻田耗水量.结果表明,丘陵地区降水利用率为71.59%,但降水与稻田需水不完全同步;全生育期总灌水量为6 298.6 m3/hm2;稻田耗水量为8 884.4 m3/hm2.相关分析表明,稻田耗水量与稻谷产量呈显著正相关.在四川丘陵地区水稻生产中,节水仍有一定空间.  相似文献   

11.
Choi  Joongdae  Kim  Gunyeob  Park  Woonji  Shin  Minhwan  Choi  Yonghun  Lee  Suin  Lee  Deogbae  Yun  Dongkoun 《Paddy and Water Environment》2015,13(2):205-213
Paddy and Water Environment - A field experiment with a locally-bred Japonica rice cultivar was conducted in 2011 to measure the effect of paddy irrigation management in Korea on rice yield, water...  相似文献   

12.
In this study, we evaluated the feasibility for the use of digested slurry from livestock manure (hereafter, slurry) in paddy fields through field experiments conducted in Southern Vietnam. The pouring method for slurry was used, and a vacuum truck was used for transportation and pouring of the slurry. A prototype slurry tanker was manufactured for transportation and application of slurry, because vacuum trucks are rarely available in rural areas of Vietnam. For evaluation of feasibility, costs and labor for application of slurry and rice production were examined and compared with conventional cultivation methods using chemical fertilizers. As the results, rice production with the use of slurry was 485 g m?2, which is within the range of on-site conventional cultivation, so slurry may be a good substitute for chemical fertilizers in rice production. Costs for slurry fertilization with a prototype slurry tanker and a vacuum truck were estimated at 0.13 USD m?2 and 0.10 USD m?2, respectively. These costs were higher than for conventional cultivation of 0.06 USD m?2 under the present conditions with T-N concentrations of approximately 400 mg L?1 in the slurry. However, we clarified that the cost for slurry fertilization can be lower than conventional cultivation when the concentrations of nitrogen in slurry increase from 400 to 2000 mg L?1. These results show that an increase in nitrogen concentrations in slurry make slurry fertilization feasible if the amounts of water for washing livestock sheds that enter into the biogas digesters are reduced.  相似文献   

13.
A field experimental study was performed during the growing season of 2001 to evaluate water and nutrient balances in paddy rice culture. Three plots of standard fertilization (SF), excessive fertilization (EF, 150% of SF), and reduced fertilization (RF, 70% of SF) were used and the size of treatment plot was 3,000 m2, respectively. The hydrologic and water quality was field monitored throughout the crop stages. The water balance analyses indicated that approximately half (47–54%) of the total outflow was lost through surface drainage, with the remainder consumed by evapotranspiration. Statistical analysis showed that there was no significant effect of fertilization rates on nutrient outflow through the surface drainage or rice yield. Reducing fertilization of rice paddy may not work well to mitigate the non-point source nutrient loading in the range of normal farming practices. Instead, the reduction in surface drainage could be important to controlling the loading. Suggestive measures that may be applicable to reduce surface drainage and nutrient losses include water-saving irrigation by reducing ponded water depth, raising the weir height in diked rice fields, and minimizing forced surface drainage as recommended by other researchers. The suggested practices can cause some deviations from conventional farming practices, and further investigations are recommended.  相似文献   

14.
15.
Greenhouse gas (GHG) emissions from the process to utilize digested slurry from methane fermentation as a fertilizer were calculated with actual operational data from a methane fermentation plant and the effects were verified by introducing the process into a field system. The results indicated that the total emissions from the utilization of digested slurry as a fertilizer were 8.1 kg-CO2 eq. per 1 ton of digested slurry and transportation was the major source of GHG emissions, accounting for 67 % of the total emissions. Shortening the transportation distance by using digested slurry in farmlands near the methane fermentation plant is the most effective to reduce GHG emissions. The results also indicated that GHG emissions from the wastewater treatment process for digested slurry were much larger than GHG emissions from the utilization of digested slurry as a fertilizer. In conclusion, CH4 as an energy source and digested slurry as a fertilizer can be effectively utilized and reduce GHG emissions by introducing the methane fermentation processes to the use of digested slurry as a fertilizer.  相似文献   

16.
根据水稻不同生育时期采取不同的灌溉方法,即:插秧至返青阶段有水不淹心;返青至分蘖高峰期寸水不露泥;拔节孕穗至蜡熟末期间歇灌溉,缺水补水。结果表明:采用节水灌溉模式稻田可节水1800m^3/hm^2,可增产625.5kg/hm^2,纯增收1431元/hm^2。  相似文献   

17.
根据水稻不同生育时期采取不同的灌溉方法,即:插秧至返青阶段有水不淹心;返青至分蘖高峰期寸水不露泥;拔节孕穗至蜡熟末期间歇灌溉,缺水补水。结果表明:采用节水灌溉模式稻田可节水1800m3/hm2,可增产625.5kg/hm2,纯增收1431元/hm2。  相似文献   

18.
In the large-scale irrigation schemes of the lower Ili River Basin of Kazakhstan, crop rotation combines paddy rice and non-rice crops. Continuous irrigation is practiced in paddy fields, whereas other crops are sustained from groundwater after only limited early irrigation. The water table in non-rice crops is raised by seepage from canals and the flooded paddy fields. We investigated the areal extent to which the groundwater level of non-irrigated fields is influenced by seepage from canals and paddy fields by examining the relationship between distance (from canal and paddy field) and groundwater level in upland fields. The groundwater level was influenced for up to 300 and 400 m from the canals and paddy fields, respectively. Geographic information system analysis of crop and canal patterns in the 11 selected years showed that if the zone of influence is 300 and 400 m from the canals and paddy fields, respectively, the groundwater level of most of the area of upland fields was raised by seepage. We conclude that the water supply to cropping fields by seepage from irrigation canals and paddy fields is adequate, but the spatial distribution of the paddy fields may be an important factor that needs more attention to help improve water use efficiency in this irrigation district.  相似文献   

19.

Greenhouse gas (GHG) emissions from the process to utilize digested slurry from methane fermentation as a fertilizer were calculated with actual operational data from a methane fermentation plant and the effects were verified by introducing the process into a field system. The results indicated that the total emissions from the utilization of digested slurry as a fertilizer were 8.1 kg-CO2 eq. per 1 ton of digested slurry and transportation was the major source of GHG emissions, accounting for 67 % of the total emissions. Shortening the transportation distance by using digested slurry in farmlands near the methane fermentation plant is the most effective to reduce GHG emissions. The results also indicated that GHG emissions from the wastewater treatment process for digested slurry were much larger than GHG emissions from the utilization of digested slurry as a fertilizer. In conclusion, CH4 as an energy source and digested slurry as a fertilizer can be effectively utilized and reduce GHG emissions by introducing the methane fermentation processes to the use of digested slurry as a fertilizer.

  相似文献   

20.
Flooded paddy fields have many functions, including not only rice production, and ecological and environmental conservation. This work estimates the extent of paddy field infiltration in Taiwan by adopting a one-dimensional Darcy-based soil/water balance model SAWAH (Simulation Algorithm for Water Flow in Aquatic Habitats). A 10 cm thick plow sole layer with a hydraulic conductivity of 0.03 cm/day, coupled with the soil texture and irrigation data obtained from 15 irrigation associations, is used to estimate the volumetric amount of annual infiltration in Taiwan. Simulation results from SAWAH indicate that the plow sole layer controls the movement of infiltrated water, with a rate about 1.8 billion cubic meters annually. The estimated infiltration rate of 1.8 billion m3/yr comprises more than 40% of the annual infiltration recharge to ground water in Taiwan. Additionally, the amount of infiltration recharge to groundwater is equivalent to 20 billion Taiwan dollars NT$ (or 0.65 billion US$) while the yearly rice crop production is 35 billion NT$ (or 1.13 billion US$). It is evident that the infiltration from rice paddy is of great importance to the economy, environment, and water resources conservation in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号