首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on an experimental field study in Japan, a model was developed to simulate dissolved nitrogen in water ponded in a paddy field. As input data, the model uses meteorological data, water balance in the field, nitrogen concentration in inlet water, and the nitrogen contribution of applied fertilizer. Five model parameters need calibration. A practical application of the model is the simulation of NH4-N and NO2+3-N concentrations in water ponded in a paddy field. The model improves our understanding of the interactions between forms of dissolved nitrogen in ponded water and can explain the complex changes in dissolved nitrogen concentrations in water ponded on a paddy field.  相似文献   

2.
While the application rate of nitrogen fertilizer is believed to dramatically influence rice fields and improve the soil conditions in paddy fields, fertilization with low use efficiency and nitrogen loss may cause environmental pollution. In this paper, 15N-labeled urea was used to trace the fate of nitrogen at four rates (0, 75, 225 and 375 kg N/ha) of urea fertilizer over three split applications in Hangzhou, Zhejiang, in 2014. Plant biomass, the soil nitrogen content of different layers, NH3 volatilization and N2O emissions were determined using the 15N abundance to calculate the portion from nitrogen fertilizer. The results indicated that rice yields increased with the application rate of nitrogen fertilizer. NH3 volatilization is the main nitrogen loss pathway, and N2O emissions were significantly associated with nitrogen application rates in the paddy. The percent of nitrogen loss by NH3 volatilization and N2O emissions increased with the nitrogen application rate. This study showed that the suitable N fertilizer in a loam clay paddy, considering the yield requirements and environmental issues, is approximately 225 kg N/ha in Hangzhou, with a distribution of 50.06% of the residual in the rice and soil and 48.77% loss as NH3 volatilization and N2O emissions. The nitrate from fertilization mainly remained in the 0–20 cm level of the topsoil.  相似文献   

3.
Curbing nutrient loads from rice cultivation has been an issue for the water quality management of surface water bodies in the Asian monsoon region. The objectives of this study were to develop paddy BMP scenarios and to evaluate their effectiveness on nutrient loads reduction using long-term model simulation. Totally five BMP scenarios were developed based on the three paddy farming factors of drainage outlet height, fertilizer type, and application amount and were compared with conventional practices. CREAMS-PADDY model was chosen for the paddy nutrient simulation, and two-year field experimental data were used for the model calibration and validation. The validated model was used to evaluate the developed BMP scenarios for the 46 years of simulation period. The observed nutrient loads were 15.2 and 1.45 kg/ha for nitrogen and phosphorus, respectively, and mainly occurred by early season drainage and rainfall runoff in summer. The long-term simulation showed that the soil test-based fertilization and drainage outlet raising practice were the two most effective methods in nutrient loads reduction. The combination of these two resulted in the greatest loads reduction by 29 and 37 % for T-N and T-P, respectively (p value < 0.001). Overall the effectiveness of the BMP scenarios was decreased in the wet season. As the conclusion, outlet height control and soil nutrient-based fertilization were suggested as the effective practices in paddy loads reduction and their combination can be a practicable BMP scenario for the paddy nutrient management.  相似文献   

4.
不同秸秆还田方式对黑土土壤氮素和物理性状的影响   总被引:14,自引:3,他引:11  
通过大田试验对不同秸秆还田方式下黑土农田生态系统土壤氮素和物理性状进行研究。结果表明,不同秸秆还田处理土壤容重降低0.09~0.19 g/cm3;土壤比重增加19.82%~29.49%;土壤总孔隙度增加18.23%~22.26%。过腹还田处理增加土壤全氮含量;秸秆直接还田处理和腐解还田处理土壤全氮含量低于常规栽培方式(对照)和无秸秆处理;不同秸秆还田处理增加了土壤铵态氮和微生物量氮含量;过腹还田处理降低了土壤硝态氮含量,提高了土壤可溶性有机氮含量;秸秆直接还田处理和腐解还田处理增加了土壤硝态氮含量,降低了土壤可溶性有机氮含量。因此,不同秸秆还田方式配施微生物菌剂,结合先进的栽培方式是增加土壤有效氮素的有效途径,有利于退化黑土的可持续利用。  相似文献   

5.
Subsurface drainage is a prerequisite for year-round crop production in a large area of northern Iran, s paddy fields. Minimizing environmental and health issues related to nitrogen (N) losses through subsurface drainage systems provides suitable condition for sustainable agriculture in these fields. A field study was conducted to evaluate nitrogen loss and its health risk in the conventional and subsurface-drained paddy fields. Ammonium, nitrate, and total N concentrations of subsurface drainage effluents, surface runoff, and leachates were monitored during three successive rice-canola-rice growing seasons from July 2011 to August 2012. Different components of N balance and health risk of nitrate leaching to groundwater were also investigated. Ammonium in drainage effluents collected during the experimental period ranged from approximately zero to 1.72 mg L?1, while nitrate fluctuated from 0.5 to 28.6 mg L?1. Average nitrate concentration in leachates of subsurface-drained area was 7.7–81.4 % higher than that in subsurface drainage effluents, while it was 126.8 % higher than that in surface runoff for the conventional field. Subsurface drainage provided a better utilization of soil N through providing winter cropping and reduced the potential for non-carcinogenic risks of nitrate leaching to groundwater. The results are encouraging for producers engaged in rice-canola production in the study area with respect to the environment and human health quality.  相似文献   

6.
A lysimeter experiment was conducted to examine the effects of plastic film mulching on the leaching rate of nitrate nitrogen (NO3-N) from chemical fertilizer that was applied to an upland field that had been converted from paddy rice production. Leaching was monitored in two lysimeters filled with sandy loam soil, which contained low soil organic matter content, under different surface mulch conditions. One was mulched only on the ridge (ridge-mulch treatment) and another one was mulched fully, including the furrow, with black plastic film (full-mulch treatment). Chemical fertilizer was mixed into the top 0.2 m of soil in the two lysimeters before installing the mulch. After transplanting broccoli, the amount of subsurface discharge water and the NO3-N concentrations in the discharge water were measured every day. Larger NO3-N discharges occurred in the ridge-mulch treatment for three days after heavy rainfalls in which cumulative precipitation exceeded 10 mm, and the daily NO3-N load was twice as large as the full-mulch treatment. The differences in the amount of subsurface discharge water and NO3-N discharged between treatments were not significant when there was no rainfall. Cumulative NO3-N loads for the ridge- and full-mulch treatment during the last month of the experimental period were 0.246 and 0.195 g m–2, respectively. The effect of mulching on the reduction of NO3-N discharge rate was higher for the full-mulch treatment. This result showed that a plastic-film mulching system would be effective as an appropriate fertilizer management to reduce nitrate-leaching losses.  相似文献   

7.
The effect of controlled irrigation and drainage on N leaching losses from paddy fields was investigated by controlling root zone soil water content and water table depth using a lysimeter equipped with an automatic water table control system. Three treatments that combined irrigation and drainage managements were implemented: controlled irrigation (CI) + controlled water table depth 1 (CWT1), CI + controlled water table depth 2 (CWT2), and flooding irrigation (FI) + actual field water table depth (FWT). Controlled irrigation and drainage had significant environmental effects on the reduction of NH4 +–N and NO3 ?–N leaching losses from paddy fields by decreasing water leakage. The NH4 +–N leaching losses from CI + CWT1 and CI + CWT2 were 3.68 and 4.45 kg ha?1, respectively, which significantly reduced by 59.2 and 50.7 % compared with FI + FWT (9.02 kg ha?1). The NO3 ?–N leaching losses from CI + CWT1 and CI + CWT2 were 0.88 and 0.43 kg ha?1 with a significant reduction of 45.2 and 73.2 %, respectively, compared with FI + FWT (1.61 kg ha?1). The application of CI + CWT1 can be a pollution-controlled water management method of reducing N leaching losses from paddy fields.  相似文献   

8.
为明确秸秆还田配施不同水平氮肥下麦田的氮素平衡状况,在夏玉米秸秆全部还田的基础上设置了不同的氮肥处理,测定了小麦植株全N含量、土壤硝态氮含量、氮肥氨挥发量和籽粒产量,分析了麦田不同土层硝态氮含量和积累量的变化趋势以及施氮量对氮素利用效率和麦田氮素平衡的影响。结果表明,小麦植株氮含量、植株氮素总积累量、籽粒产量均随施氮量的增加而显著增加;施加氮肥使氮素养分利用率、氮肥偏生产力显著降低。与播种时期土壤硝态氮含量相比,成熟期硝态氮含量降低,且施氮处理下土壤硝态氮含量、硝态氮积累量高于不施氮处理;硝态氮积累量主要分布在麦田土壤表层,与施氮量成正相关关系。施氮量为0、160、220、280kg·hm~(-2)时,硝态氮淋失量分别为5.04、13.10、17.10、37.26kg·hm~(-2)。氮肥的氨挥发速率在施肥后第一天达到最高,随后逐渐降低,遇到降雨或灌溉迅速降低至不施氮处理的氨挥发水平,氮肥氨挥发量与施氮量及时间存在正相关关系。160、220、280kg·hm~(-2)施氮量处理下,氮肥氨挥发量分别为0.65、0.77、1.01kg·hm~(-2)。从麦田氮素平衡来看,不施氮肥处理耗竭土壤氮素资源;施氮量为160kg·hm~(-2)时,有消耗土壤氮的风险;施氮量为220kg·hm~(-2)时,氮素投入与氮素输出保持平衡;施氮量为280kg·hm~(-2)时,有大量氮素损失到环境中的风险。为有效控制氮素淋溶和氨挥发损失,兼顾产量和节约生产成本,该区推荐施氮量为220kg·hm~(-2)。  相似文献   

9.
The chemical properties of soil samples collected in August and November from an abandoned terraced paddy field dominated by reeds were examined by in vitro incubation under normal moisture and flooded conditions. Soil pH extracted with water [pH(H2O)] was higher in soil samples collected from a depth of 0–10 cm in November than in samples collected in August; a high pH(H2O) was maintained even during nitrification under normal moisture conditions. When soil samples collected in August from a depth of 0–10 cm were incubated under flooded conditions, a significant decrease in reduction potentials (Eh) and an increase in total Fe2+ concentrations were observed. Reductive conditions during sampling were strong in soil samples collected in August from a depth of 40–50 cm. Moreover, under normal moisture conditions, soil samples collected in August showed significant decreases in pH(H2O) and significant production of water-soluble SO4 2? than those collected in November. Glucose addition to soil samples collected from a depth of 0–10 cm caused nitrogen immobilization under normal moisture conditions, increases in exchangeable Fe2+ and Mn2+, and decreases in exchangeable bases (Ca2+, Mg2+, K+, and Na+) under flooded conditions. Seasonal changes in soil properties were probably due to microbial activity and vegetation phenology; thus, the timing of soil sampling influenced incubation experiment results. When abandoned terraced paddy fields are created as biotopes, seasonal changes in reductive soil conditions and slope position must be considered to prevent soil acidification and base cation elution.  相似文献   

10.
There is a growing concern about health hazards linked to nitrate (NO3) toxicity in groundwater due to overuse of nitrogen fertilizers in rice production systems of northern Iran. Simple-cost-effective methods for quick and reliable prediction of NO3 contamination in groundwater of such agricultural systems can ensure sustainable rural development. Using 10-year time series data, the capability of adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) models as well as six geostatistical models was assessed for predicting NO3 concentration in groundwater and its noncarcinogenic health risk. The dataset comprised 9360 water samples representing 26 different wells monitored for 10 years. The best predictions were found by SVM models which decreased prediction errors by 42–73 % compared with other models. However, using well locations and sampling date as input parameters led to the best performance of SVM model for predicting NO3 with RMSE = 4.75–8.19 mg l?1 and MBE = 3.3–5.2 mg l?1. ANFIS models ranked next with RMSE = 8.19–25.1 mg l?1 and MBE = 5.2–13.2 mg l?1 while geostatistical models led to the worst results. The created raster maps with SVM models showed that NO3 concentration in 38–97 % of the study area usually exceeded the human-affected limit of 13 mg l?1 during different seasons. Generally, risk probability went beyond 90 % except for winter when groundwater quality was safe from nitrate viewpoint. Noncarcinogenic risk exceeded the unity in about 1.13 and 6.82 % of the study area in spring and summer, respectively, indicating that long-term use of groundwater poses a significant health risk to local resident. Based on the results, SVM models were suitable tools to identify nitrate-polluted regions in the study area. Also, paddy fields were the principal source of nitrate contamination of groundwater mainly due to unmanaged agricultural activities emphasizing the importance of proper management of paddy fields since a considerable land in the world is devoted to rice cultivation.  相似文献   

11.
In order to increase the efficacy of water and control the losses of fertilizer, it is necessary to assess the influence of level of fertilization on crop responses, movement and balance of water and solutes from fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization on crop responses and fertilizer solute transport in rice crop field in a sub-humid and sub-tropical region. Field experiment was conducted on rice crop (cultivar IR 36) during the years 2003, 2004, and 2005. The experiment included four fertilizer treatments comprising different levels of fertilizer application. The fertilizer treatments during the experiment were: F1 = control with N:P2O5:K2O as 0:0:0 kg ha?1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha?1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha?1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha?1. The results of the investigation revealed that the magnitudes of crop parameters such as grain yield, straw yield, and maximum leaf area index increased with increase in fertilizer application rate. The levels of fertilization had very little effect on water loss via deep percolation and water use by the crop. The levels of fertilization had considerable effect on N leaching loss and uptake of N whereas it had no significant impact on leaching loss of water-soluble phosphorus. This indicated that PO4-P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. The results also revealed that increase in level of fertilization increased water use efficiency considerably by increased crop yield. From the observed data of nutrient use efficiency, crop yield and environmental pollution, the fertilization rate of N:P2O5:K2O as 80:40:40 kg ha?1 (F2) was the most suitable fertilizer treatment for rice crop among studied treatments.  相似文献   

12.
We investigated the soil and soil water chemistry in abandoned terraced paddy fields (reed stand) and a thicket of deciduous broad-leaved trees (thicket stand) on the same slope in Sado Island, Japan. The soils gathered from these plots were incubated under different water conditions to examine the dynamics of dissolved ions. The organic carbon pool in the soil in the reed stand at the lower slope position was greater than the thicket stand at the middle slope position. The high concentration of base cations and an almost neutral pH of the soil water at the reed stand corresponded with the high exchangeable cation concentrations and base saturation in the soil. These results reflect the mineral-rich groundwater percolating down the slope, which may be produced by chemical weathering. An in situ sulfate reduction in the reed stand at deeper soil horizons was identified. The different water conditions in the incubated soils affected the soil pH(H2O), transformation of Fe, and dominant anions (NO3 , HCO3 , and SO4 2−). These biogeochemical processes were more conspicuous in the reed stand at the lower slope position where the concentrations of organic matter and base cations were high. When the abandoned terraced paddy field is developed for the conservation of the Japanese crested ibis (Nipponia nippon) habitat in Sado Island, the reductive subsoil at the lower slope position should be kept waterlogged to limit sulfuric acid generation.  相似文献   

13.
Soil acidity is a limiting factor affecting the growth and yield of many crops all over the world. It is recognized that liming is the most common management practice of profitable crop production on acid soils. On the other hand, it is well-known that the form of nitrogen may affect tobacco yield and quality. In this work, the impact of the interaction between three hydrated lime (HL, Ca(OH)2) rates (0, 1.5 and 3 t HL ha−1) and three nitrogen fertilizer forms (NO3-N 100%, NH4-N 100% and NO3-N 50% plus NH4-N 50%) on growth, yield and quality characteristics of Virginia (flue-cured) tobacco was investigated in a 4-year (1995–1998) field experiment established in an acid soil (pHwater 1:1 5.3) located in Northern Greece. Lime was applied only once in December 1994, while nitrogen fertilizer was applied annually before transplanting. The results showed that the effect of liming on tobacco growth was not dependent on time, weather conditions and form of nitrogen fertilizer. Liming increased soil pH, enhanced the early growth of tobacco (within 30 days after transplanting (DAT)) and finally increased the total gross and trade yield of tobacco proportionally to the amount of HL added. However, the quality index (organoleptic characteristics) of the cured product was improved only at the HL application rate of 3 t HL ha−1. Furthermore, liming significantly increased Ca and P concentrations but decreased K concentration in cured tobacco leaves. Tobacco yield increase was attributed to the increase of P uptake. Liming also increased the ash content of cured leaves, whereas it did not significantly affect nicotine, total nitrogen and reducing sugars. The use of ammonium N in fertilizer delayed the early growth of tobacco, reduced the nicotine concentration and increased the reducing sugars concentration of the cured product. Total-N, P, K and Mg concentrations of cured leaves were not significantly affected by the form of nitrogen fertilizer used. The results suggested that an initial application of hydrated lime at a rate of 3 t HL ha−1 may ameliorate soil acidity and increase the yield and quality characteristics of Virginia tobacco at least over a 4-year period after application, independent of the form of N fertilizer used.  相似文献   

14.
The Japanese government started to construct two subsurface dams on Miyako Island in 1988, and the project was completed in 2001. Before the construction of the dams, the NO3-N concentration of groundwater on the island was about 10 mg/l, the upper limit for drinking water in Japan, owing to the application of fertilizer to sugarcane fields. Predicting the effect of these subsurface dams on the groundwater environment was difficult because they were probably the first mega-subsurface dams in the world. We measured the NO3-N concentration in the groundwater at observation wells before and after construction of the Sunagawa Dam and after the groundwater began to be used. We also measured the NO3-N concentration monthly at a typical observation well in the catchment over a period 14 years to evaluate the environmental impact of construction of the dam. The highest NO3-N concentrations were downstream before completion of the subsurface dam, and a high NO3-N concentration zone remained around the cut-off wall after its completion, but this high-concentration zone disappeared and the distribution of NO3-N became uniform after pumping of the groundwater began. Overall, the NO3-N concentration decreased gradually. These results show that the groundwater quality did not deteriorate as a result of the construction of the Sunagawa Subsurface Dam.  相似文献   

15.
Sodium adsorption ratio (SAR) is one of the water quality indexes that whose is important due to reuse or depletion to environment. Solutes in drain water can be controlled by adsorption, chemical or biological reaction, organic envelope of drainage. Rice husk is the common option of drainage envelops in paddy fields. In this study, the ability of reduction of SAR by rice husk was evaluated in batch scale and physical model of drain envelops. In the batch experiments, the adsorption of SAR parameters was investigated by adding 2 g of rice husk into a 100 ml of sodium chloride solution. The results indicated that rice husk absorbed calcium, magnesium and sodium, respectively. By increasing the temperature, contact time and pH, adsorption of calcium, magnesium and sodium was increased; however, the higher concentration of sodium in soil solution reduced the percentage of adsorption. In a more realistic state, physical models of subsurface drainage in the paddy fields were made. Drainage envelope treatments included of rice husk (H), combination of 20 and 60 % of husk with gravel (H20G80 and H60G40) and a pipe without envelope (NE). Due to higher drain discharge and more sodium removal (lower SAR in drain water), treatment H with the discharge of 16.2 ml/min and SAR of 1.27 (meq/l)0.5 was better in comparison with other treatments.  相似文献   

16.
Two water management practices, an intermittent irrigation scheme using automatic irrigation system (AI) and a spillover-irrigation scheme (SI), were compared for the fate and transport of commonly used herbicides, mefenacet (MF) and bensulfuron-methyl (BSM) in experimental paddy plots. Maximum mefenacet concentrations in paddy water were 660 and 540 μg L−1 for AI and SI plot, respectively. The corresponding values for bensulfuron-methyl were 46.0 and 42.0 μg L−1. Dissipation of the herbicides in paddy water appeared to follow the first-order kinetics with half-lives (DT50) of 1.9–4.5 days and DT90 (90% mass dissipation) of 7.8–11.3 days. The AI plot had no surface drainage, hence no herbicide was lost through paddy-water discharge. However, SI plot lost about 38 and 49% of applied mefenacet and bensulfuron-methyl, respectively. The intermittent irrigation scheme using automatic irrigation system with a high drainage gate was recommended to be a best management practice for controlling the herbicide losses from paddy fields. The paddy field managed by spillover-irrigation scheme may cause significant water and herbicide losses depending on the volume of irrigation and precipitation. The water holding period after herbicide application was suggested to be at least 10 days according to the DT90 index.  相似文献   

17.
Water management is recognized as one of the most important factors in regulating nitrous oxide (N2O) emissions from paddy fields. In China, controlled irrigation (CI) is widely applied because it has been proved highly effective in saving water. During the rice-growing season, the soil in CI paddy fields remains dry 60–80% of the time compared with soil irrigated by traditional methods. This study aims to assess N2O emissions from paddy fields under CI, with traditional irrigation (TI) as the control. The cumulative N2O emission from CI paddy fields was 2.5 kg N ha−1, which was significantly greater than that from TI paddy fields (1.0 kg N ha−1) (P < 0.05). Soil drying caused substantial N2O emissions. The majority (73.9%) of the cumulative N2O emission from CI paddy fields was observed during the drying phase, whereas no substantial N2O emissions were observed when the soil was re-wetted after the drying phase. More and significantly higher peaks of N2O emissions from CI paddy fields (P < 0.05) were also detected. These peaks were observed ~8 days after fertilizer application at water-filled pore spaces (WFPS) ranging from 78.0 to 83.5%, soil temperature ranging from 29.1 to 29.4°C, and soil redox potential (Eh) values ranging from +207.5 to +256.7 mV. The highest N2O emission was measured 8 days after the application of base fertilizer at a WFPS of 79.0%, soil temperature of 29.1°C, and soil Eh value of +207.5 mV. These results suggest that N2O emissions may be reduced obviously by keeping the WFPS higher than 83.5% within 10 days after each fertilizer application, especially when the soil temperature is suitable.  相似文献   

18.
This study aims to assess the nitrogen contamination of groundwater in paddy and upland fields. A reactive chemical transport model PHREEQC and a variable saturated groundwater flow and transport model FEMWATER were used to evaluate the vertical transport of nitrogen compound in various soil types of paddy and upland. The shallow groundwater quality monitoring data of 2003, 2006, 2009 in the Choushui river alluvial fan, the major agriculture production area in Taiwan, were applied to support the validity of the numerical simulation findings. Results from PHREEQC and FEMWATER simulations showed that the organic-rich impermeable plow sole layer underneath the muddy layer of rice paddy can effectively reduce NO3 and N2 to NH4 + and retard the movement of NH4 +. However, in the upland field which has no plow sole layer, the NH4 + can move easily to the shallow aquifer and contaminate the groundwater. The spatiotemporal distribution of NO3 –N and NH4 +–N in the Choushui river alluvial fan revealed that high nitrate–N contamination areas were located mainly in the upland field of the proximal fan, where the granular unconfined aquifer was vulnerable to surface contaminants. Moreover, the unconfined nature of the aquifer allows the oxidization of NH4 + to NO3 and accelerates the plume movement. High ammonium–N concentration areas were mostly dispersed in the distal-fan area where upland planting and aquacultural farming were prevailed. The high NH4 +–N found in the northern Choushui river alluvial fan was attributed to the alternative planting of rice and upland crops, and the plow sole layer was broken to maintain the quick drainage upland crop needs.  相似文献   

19.
The widely adopted alternate wetting and drying (AWD) irrigation for rice production is increasingly needed to quantify the different water outflows and nitrogen leaching losses. We investigated the effects of AWD on percolation, water productivity, nitrogen leaching losses, and nitrogen productivity through in situ experiments. Results show that AWD reduced irrigation water without a significant impact on grain yields and increased the mean water productivity by 16.9 % compared with continuously flood irrigation (CFI). The mean nitrogen productivity of 135 kg ha?1 N level was 22.2 % higher than that of 180 kg ha?1 N level, although grain yields substantially increased because of nitrogen fertilization application. The percolation was also reduced by 15.3 % in 2007 and 8.3 % in 2008 compared to CFI. However, the cumulative percolation of the first 5 days after irrigation in AWD plots is significantly larger than that in CFI plots. The NH4 +–N and TN leaching losses of AWD and CFI had no significant variations while the NO3 ?–N leaching losses were increased caused by AWD. The total NH4 +–N, NO3 ?–N, and TN leaching losses of AWD in the first 3 days after irrigation were higher than that of contemporaneous CFI. The results indicate that the bypass or preferential flow and strengthened nitrification–denitrification nitrogen transformation processes because of alternate wetting and drying potentially decrease the water saving effectiveness and increase the NO3 ?–N loading to the groundwater.  相似文献   

20.
通过田间试验,研究6种(N_1~N_6)硝态氮与铵态氮配比处理对旱地全膜双垄沟播玉米植株氮素积累、转运、氮素利用及子粒产量的影响。结果表明,单施硝态氮时玉米的养分吸收、氮素利用及产量均最低。N6(硝态氮与铵态氮3∶1配比)处理下玉米全生育期氮素积累量最高,氮素吸收强度较单施硝态氮处理高55.19%~73.28%(P0.05),该处理下叶片和茎中氮素转移量较单施硝态氮处理高78.99%和93.52%(P0.05);叶片和茎中分别有66.50%~71.89%和43.44%~55.59%的氮素转移到子粒中;叶片和茎对子粒的氮素贡献率分别较单施硝态氮处理高43.80%和56.00%(P0.05);玉米子粒产量、氮素吸收效率及氮肥偏生产力较其他处理显著增加3.31%~9.94%、4.62%~33.89%和3.31%~9.93%。硝态氮和铵态氮配施对玉米的养分吸收有明显的促进作用,提高硝态氮的施用比例有利于提高玉米叶片和茎对子粒氮素的贡献率,硝态氮与铵态氮按3∶1比例配施有利于提高当地玉米子粒产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号