首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hyderabad is one of the fastest growing cities in India. To meet its rapidly expanding water needs, it constructed and began withdrawals from the Singur reservoir, located on a tributary of the Godavari River, in 1991. Administrative rules define allocation of water from the reservoir but prioritize Hyderabad urban needs over much longer established agricultural uses. Furthermore, the agricultural sector receives less water than even these rules allow, and urban withdrawals have changed the quantity and the timing of the water, which is available to agriculture. An increase in groundwater use by farmers may have been one response to these changes, with possible implications for surface and groundwater users further downstream. While proposals have been put forth to compensate the agricultural sector in general and the farmers directly affected by reallocation, for example by improving access to wastewater for irrigation downstream from Hyderabad or by conveying wastewater for irrigation purposes downstream Singur reservoir, compensation has not been implemented to date. The Hyderabad case study clearly highlights the advantages for devising and implementing arrangements to regulate the transfer of water from agriculture to cities, allowing a move from sectoral competition for water to efficient management of a scarce resource.
Mattia CelioEmail:
  相似文献   

3.
The uncertainty of monsoon rainfall and the decreasing availability of irrigation water, as a result of climate change, and high water demand of other sectors have resulted to wide adoption of alternate wetting and drying (AWD) technique especially in irrigated lowland rice production to overcome water scarcity. However, under climate change circumstances, AWD can be optimized when taking advantage of favorable water seasonality conditions to increase crop yield and irrigation water use efficiency. Therefore, a field trial was conducted to find suitable water depth for reducing rice irrigation water use by combining four different water depth treatments (T2cm, T3cm, T4cm, and T5cm) with rainfall through a randomized complete block design having 3 replications. Water depths were applied weekly from transplanting to heading. The results showed that water stress at vegetative stage decreased plant height and tillers number between 7 and 33 % at panicle initiation, followed by total and partial growth recovery. In addition, panicle number per hill showed a 53–180 % decrease at the heading stage. Severe water stress induced by the lowest water treatment significantly reduced yield components between 15 and 52 % at harvest. It was found that weekly application of 3 cm water depth combined with rainfall improved AWD effectiveness, and yielded the highest beneficial water productivity with less yield expenses.  相似文献   

4.
The objective of this study was to determine effect of storage time, storage temperature and addition of fibre on sensory quality, state of water, microstructure and texture of bread and dough.  相似文献   

5.
Field experiments were conducted at DRR farm located at ICRISAT, Patancheru, in sandy clay loam soils during four seasons, Kharif 2008, Rabi 2008–2009, Kharif 2009 and Rabi 2009–2010, to investigate growth parameters, water-saving potential, root characteristics, chemical, biological, and microbial properties of rhizosphere soil, and grain yield of rice (Oryza sativa L.) by comparing the plants grown with system of rice intensification (SRI) methods, with organic or organic + inorganic fertilization, against current recommended best management practices (BMP). All the growth parameters including plant height, effective tillers (10–45 %), panicle length, dry matter, root dry weight (24–57 %), and root volume (10–66 %) were found to be significantly higher with in SRI-organic + inorganic over BMP. With SRI-organic fertilization, growth parameters showed inconsistent results; however, root dry weight (3–77 %) and root volume (31–162 %) were found significantly superior compared to BMP. Grain yield was found significantly higher in SRI-organic + inorganic (12–23 and 4–35 % in the Kharif and Rabi seasons, respectively), while with SRI-organic management, yield was found higher (4–34 %) only in the Rabi seasons compared to BMP. An average of 31 and 37 % of irrigation water were saved during Kharif and Rabi seasons, respectively, with both SRI methods of rice cultivation compared to BMP. Further, total nitrogen, organic carbon%, soil dehydrogenase, microbial biomass carbon, total bacteria, fungi, and actinomycetes were found higher in the two SRI plots in comparison to BMP. It is concluded that SRI practices create favorable conditions for beneficial soil microbes to prosper, save irrigation water, and increase grain yield.  相似文献   

6.
A good water users’ organization (WUO) is a significant factor in the practical success of an irrigation project. The major duties of WUOs are to operate and maintain their irrigation facilities and to perform the financial and organizational management. This paper analyzes the history and present situation of three WUOs in the Chao Phraya Delta, Thailand which have been awarded for their successful activities: namely, two pilot integrated water user groups (IWUGs) and one pilot water users’ association. The results of a field survey and questionnaire revealed the users’ past experience, methods of irrigation management, and social mobilization efforts. The main results of our analysis are as follows: (1) among the three WUOs, only the IWUG Sao Hi Unity Agriculture Irrigation (IWUG SHUAI) can be regarded as a successful case in terms of long-term management, (2) as a pumping irrigation project, the IWUG SHUAI entails an upfront electricity cost, which gives farmers added impetus to organize a management system and budget, and to learn from past failures, and (3) in contrast, the member farmers in the gravity irrigation projects lack the impetus to realize the necessity of a common management budget, a situation which can be improved only by the education of the leaders and clear explanation to the member farmers.  相似文献   

7.
Crop consumptive water requirement (Crop-ET) is a key variable for developing management plans to optimize the efficiency of water use for crop production particularly in semiarid zone. In Burkina Faso, the unfavorable climatic conditions characterized by the low and unevenly distribution of rainfall have pushed water resources management to the forefront of the crop production issue. Crop-ET is extremely required in rainwater effective management for mitigating the impact of water deficit on the crops. Basically, Crop-ET determination involves reference evapotranspiration (ETo) and crop coefficient (Kc) which required complete climatic data and specific site crop information, respectively. ETo estimation with the recommended FAO56 Penman–Monteith (PM) equation is limited in Burkina Faso due to the numerous meteorological data required which are not always available in many production sites. In such circumstances, research to compute directly Crop-ET as an alternative to the two-step approach of calculating ETo and determining site specific Kc, seems desirable. Therefore, this study aims to evaluate the performance of a mixture principal component analysis neural network (PCANN) model for computing rice Crop-ET directly from temperatures data in Fada N’Gourma region located in Eastern Burkina Faso, Africa. From the statistical results, rice Crop-ET can be successfully computed by using PCANN methodology, when only temperatures data are available in this African semiarid environment. Thus, in poor data situation, Crop-ET direct computation can be rapidly addressed through PCANN model for agricultural water management in African semiarid regions.  相似文献   

8.
The rice seeds of IR661 (indica); Yanjing 2 (japonica) and Shanyou 53 indica hybrid F_1 were grown in 15 nursery trays (40×20×15cm~2 each), A water stress treatment was carried out at the leaf age 5 by excluding water for 120h. Leaf water potential (LWP) was determined with chamber pressure. Abscisic acid (ABA) content in rice leaves was measured with radioimmnoassay. The content of ABA in the leaves changed a little when LWP was larger than—0.02 MPa, but increased rapidly when LWP was lower than this value. It could be considered that the critical LWP for obvious accumulation of ABA in rice seedling leaves was about—0.02 MPa.  相似文献   

9.
The water balance and groundwater dynamics due to surface–groundwater interactions for watershed health assessment were investigated for the Han River basin (34,148 km2) of South Korea using the Soil and Water Assessment Tool (SWAT). The model was established considering 4 multipurpose dams and 3 multifunction weirs. The SWAT was spatially calibrated and validated using daily observed inflows for the dam (2005–2014) and weir (2012–2014) as well as evapotranspiration, soil moisture, and groundwater level data (2009–2013). The simulation results revealed the impact of surface–groundwater exchange fluxes on the water balance and baseflow by evaluating the vertical water budget and horizontal water transfer. Evapotranspiration in the surface and return flows from the shallow aquifer for the dry season was estimated to be 29 and 10% higher than for the wet season, respectively. Percolation’s role was also significant, providing approximately 24% of the annual groundwater recharge to shallow aquifers in the rainy season. On average, the February to August period (A) was characterized by a net flux of infiltration into the groundwater. For the September to January period (B), the proportion of groundwater flow into the river of the basin was nearly balanced by a slight increase in surface water infiltration. During period A of average surface water infiltration into the groundwater, the net groundwater recharge was positive and up to 20% of the infiltration during this period resulted from groundwater recharge. These results showed that groundwater recharge is strongly affected by the surface water and groundwater interactions.  相似文献   

10.
Seedlings of drought-tolerance rice varieties Han 501 and Han A03, and the drought sensitive varieties Nanjing 11 and Yanjing 2 were raised in a paddy field and transplanted into pots at the age of 8 leaves. Water stress started at the tillering stage by holding water from 0 MPa of the soil water potential in pots till the leaves showed seriously wilting. Plants with well-watered were taken as control. Free proline content in rice leaves at different leaf water potential was measured. The levels of free proline accumulation in leaves under water stress were expressed by the relative proline content(RPC), the stress treatment/the control (100%).  相似文献   

11.
A 2-year field experiment was conducted during the wet seasons (July–October) of 2008 and 2009 on a Typic Hapludoll Mollisol in Indo-Gangetic Plains Region (IGPR) to: (i) investigate the effects of field water re-ponding intervals and plant spacing on the growth, yield, and water productivity (WP) of two rice cultivars under system of rice intensification (SRI) management, and (ii) assess comparative performance of SRI versus ‘best management practices’(BMP) of rice cultivation. This experiment was designed with 14 treatments, 12 under SRI, and 2 BMP (controls). SRI treatments comprised of 3 irrigation regimes viz, irrigation at 1, 3, and 5 day(s) after disappearance of ponded water (DADPW), 2 plant spacings (20 × 20, 25 × 25 cm), and 2 rice cultivars (Pant Dhan 4 and Hybrid 6444). Two BMP (control) treatments comprised of standard cultivation recommendations for flooding and spacing. The experiment was laid-out in a factorial randomized complete block design with three replications. Statistical analysis of data revealed significant variations in root–shoot characteristics and rice yield under SRI between years, reflecting different rainfall patterns. During 2009, a low rainfall year, the panicle numbers m?2, dry root weight m?2, root volume m?2, filled spikelet number panicle?1, and filled spikelet weight panicle?1 were significantly higher, which resulted in a rice grain yield enhancement by 5.1 % over 2008, when there was unusually heavy rainfall. Climate × irrigation regime interaction revealed a non-significant influence of irrigation regimes on growth and yield during 2008, whereas in 2009, irrigation at 1 DADPW and 3 DADPW increased grain yield by 12.8 and 8 %, respectively over 5 DADPW. Better root–zone soil moisture regimes, balancing water, and oxygen availability were responsible for higher yields under irrigation at 1 and 3 DADPW. In 2008, soil moisture content (SMC) in 0–15 cm layer was 91, 86, and 82 % of field capacity (FC) at panicle initiation, and 88, 80, and 77 % at panicle emergence stage when irrigation was at 1, 3, and 5 DADPW, respectively; the lower layers (15–30, 30–45 cm) retained their SMC between 87 and 94 % of FC at both stages. During 2009, SMC in all the three layers at both stages was more than 85 % of FC when irrigating at 1 DADPW, and a little more than 70 % for the 0–15 cm layer and >80 % for the other two layers when irrigation was done at 3 DADPW. SMC dropped to below 60 % of FC in the 0–15 cm layer and remained between 67 and 77 % of FC in the other two layers, with lower yield resulting when irrigations were applied at 5 DADPW. However, WP was the highest with irrigation at 5 DADPW (38.5 kg ha cm?1). Wider plant spacing (25 × 25 cm) resulted in generally and significantly higher grain yield and WP. On an average, SRI (6.1 t ha?1) resulted in yield advantage of 0.9 t ha?1 over BMP (5.2 t ha?1). Overall, it is inferred that in SRI, wider planting (25 × 25 cm) with field re-ponding at 3 DADPW if there is adequate water availability and at 5 DADPW under limited water supply conditions, may lead to higher rice yields and WP in sub-humid tarai Mollisols of IGPR and comparable agro-climatic conditions in Indian sub-continent.  相似文献   

12.
The ecological and physiological water requirement of rice and rice yield was studied under three irrigation patterns, which were A: moist irrigation, remains 70-90% of saturated soil water content except 3-4cm deep water layer in tillering stage in paddy : B : flood irrigation,  相似文献   

13.
Crispness of bread is rapidly lost because of water migration inside the crumb towards the crust. How crumb properties determine this process independent of crust properties has not been examined before. Therefore, the aim of this study was to analyze and explain the influence of crumb morphology on the overall crispness retention. Crispness retention was determined by analyzing the acoustic emission of breads differing in either crust or crumb morphology. When crumb morphology is coarse with a lower number of large connections between the air cells, the effective diffusion coefficient is reduced. This effective diffusion coefficient of crumb, which equals approximately half the value of air, was estimated using X-ray micro-computer tomography images of crumb pieces. If the crumb has a lower effective diffusion coefficient, bread with similar crust properties has significantly longer crispness retention. Despite this, our data show that variations in properties of crust, which has 30 times higher permeability than crumb, have a larger impact on crispness retention than variations in properties of crumb.  相似文献   

14.
《Field Crops Research》1999,63(3):211-224
Vertic Inceptisols are prone to land degradation because of excessive run-off and soil erosion during the rainy season. Productivity of soybean-based systems on these soils needs to be improved and sustained by better management of natural resources, particularly soil and water. During 1995–1997 a field study was conducted in Peninsular India on a Vertic Inceptisol watershed to study the effect of two soil depths, namely shallow (<50 cm soil depth) and medium-deep (≥50 cm soil depth) and two landform treatments, namely flat and broadbed-and-furrow (BBF) systems, on productivity and resource-use efficiency of soybean–chickpea rotation (soybean in rainy season followed by chickpea in post-rainy season). Soybean grown on flat landform on medium-deep soil had a higher leaf area index and more light interception compared to the soybean grown on the BBF landform. This resulted in an increase in mean seed yield for the flat landform (2120 kg ha−1) compared to the BBF landform (1870 kg ha−1). However, the landform treatments on shallow soil did not affect soybean yields. The soybean yield was higher on the medium-deep soil (1760 kg ha−1) than on the shallow soil (1550 kg ha−1) during 1995–1996, but were not different during 1996–1997. In both years chickpea yields and total system productivity (soybean + chickpea yields) were greater on medium-deep soil than on the shallow soil. Total run-off was higher on the flat landform (25% of seasonal rainfall) than on the BBF landform (20% of seasonal rainfall). This concomitantly increased profile water content (10–30 mm) of both soils in BBF compared to the flat landform treatment during 1995–1996, but not during 1996–1997. Deep drainage was higher in the BBF landform than in flat, especially for the shallow soil. Across landforms and soil depths, water use (evapotranspiration) by soybean–chickpea rotation during 1996–1997 ranged from 496 to 563 mm, which accounted for 54–61% of the rainfall. These results indicate that while the BBF system is useful in decreasing run-off and increasing infiltration of rainfall on Vertic Inceptisols, there is a need to increase light use by soybean on BBF during the rainy season to increase its productivity. A watershed-based farming system needs to be adopted to capture significant amount of rain water lost as run-off and deep drainage. The stored water can be used for supplemental irrigation to increase productivity of soybean-based systems leading to overall increases in resource-use efficiency, crop productivity, and sustainability.  相似文献   

15.
To evaluate the effects of irrigation and organ-ic matter on methane emission,experimentswere conducted on Aqu-paddy soil with pH6.2,24.16g·kg~(-1) of organic C,2.2g·kg~(-1)of total N,14.4 C mol·kg~(-1) of ECE,53%silt,and 43% clay on CNRRI farm.The plotarea was 5m×5m,and the experiment wasdesigned in a completely randomized block de-sign with 4 treatments and 3 replications.Thefour treatments were:local practice withoutgreen manure (T_1),intermittent irrigation(T_2),applying inorganic fertilizer with greenmanure and local practice irrigation (T_3,con-trol),and continuous irrigation(T_4).  相似文献   

16.
In order to confirm that the regional function of Kanazawa’s irrigation water is representative of the urban type, and that Shichika’s irrigation water is representative of the rural, the contingent valuation method (CVM) was applied to determine the economic value of the functions aside from agricultural production, that is, the multi-functional roles of the irrigation water. The economic value of the regional function in Kanazawa was significantly lower than in the Shichika area, reflecting a difference in charge for irrigation water and people’s preference or consciousness in urban and rural areas. In urban areas, people tend to place a higher value on ground view, peace of mind and environmental friendliness. In contrast, in rural areas, irrigation water is presently used for domestic purposes. In other words, in urban areas people see water as public goods, while in rural areas the people see water as private goods. In addition, differences in the economic value of each item that was statistically significant for CVM were estimated using the Turnbull model comparing the items approved or rejected by the respondent.  相似文献   

17.
We studied the feasibility of a new production mode incorporating rice cultivation with fish culture in 1991.  相似文献   

18.
The rapid visco analysis (RVA) system was used to measure rheological behaviour in 20% (w/v) gluten-in-water suspensions upon applying temperature profiles. The temperature profiles included a linear temperature increase, a holding step, a cooling step with a linear temperature decrease to 50 °C, and a final holding step at 50 °C. Temperature and duration of the holding phase both affected RVA viscosity and protein extractability. Size-exclusion and reversed-phase HPLC showed that increasing the temperature (up to 95 °C) mainly decreased glutenin extractability. Holding at 95 °C resulted in polymerisation of both gliadin and glutenin. Above 80 °C, the RVA viscosity steadily increased with longer holding times while the gliadin and glutenin extractabilities decreased. Their reduced extractability in 60% ethanol showed that γ-gliadins were more affected after heating than α-gliadins and ω-gliadins. Enrichment of wheat gluten in either gliadin or glutenin showed that both gliadin and glutenin are necessary for the initial viscosity in the RVA profile. The formation of polymers through disulphide bonding caused a viscosity rise in the RVA profile. The amounts of free sulphydryl groups markedly decreased between 70 and 80 °C and when holding the temperature at 95 °C.  相似文献   

19.
《Field Crops Research》1999,63(3):225-236
In rainfed agriculture, climatic variability has profound effects on the performance of management systems in improvements of productivity and use of natural resources. A field study was conducted on a Vertic Inceptisol during 1995–1997 seasons at the ICRISAT Center, Patancheru, India, to study the effect of two landforms, i.e., broadbed-and-furrow (BBF) and flat, and two soil depths (shallow and medium-deep) on crop yield and water balance of a soybean–chickpea rotation. Using two seasons experimental data, a soybean–chickpea sequencing model was evaluated and used to extrapolate the results over 22 years of historical weather records. The simulation results showed that in 70% of years total runoff for BBF was greater than 35 mm (range 35–190 mm) compared to greater than 60 mm (range 60–260 mm) for flat on the shallow soil. In contrast on the medium-deep soil it was greater than 70 mm (range 70–280 mm) for BBF compared to greater than 80 mm (range 80–320 mm) for the flat landform. The decrease in runoff on BBF resulted in a concomitant increase in deep drainage for both soils. In 70% of years, deep drainage was greater than 60 mm (range 60–390 mm) for the shallow soil and ranged from 10 to 280 mm for the medium-deep soil. In 70% of years, the simulated soybean yields were greater than 2200 kg ha−1 (range 2200–3000 kg ha−1) and were not influenced by landform or soil depth. In the low rainfall years, yields were marginally higher for the BBF than for the flat landform, especially on the shallow soil. Simulated chickpea yields were higher for the medium-deep soil than for the shallow soil. In most years, marginally higher chickpea yields were simulated for the BBF than for the flat landform on both soil types. In 70% of years, the chickpea yields were greater than 500 kg ha−1 (range 500–1500 kg ha−1) for the shallow soil, and greater than 800 kg ha−1 (range 800–1960 kg ha−1) for the medium-deep soil. Total productivity of soybean–chickpea rotation was greater than 3000 kg ha−1 (range 3000–4150 kg ha−1) for the shallow soil and greater than 3450 kg ha−1 (range 3450–4700 kg ha−1) for the medium-deep soil in 70% of years. These results showed that in most years BBF, landform increased rainfall infiltration into the soil and had marginal effect on yields of soybean and chickpea. Crop yields on Vertic Inceptisols can be further increased and sustained by adopting appropriate rain water management practices for exploiting surface runoff and deep drainage water as supplemental irrigation to crops in a watershed setting.  相似文献   

20.
The mechanism of gluten network development is still unclear and remains difficult to study since gluten network formation in bread dough is a rather quick process. In order to better characterize this dynamic event, we slowed down its kinetics by increasing the dough water content. During mixing, performed with a planetary mixer at variable mixing speeds and flour/water ratios, the torque was recorded. Common flours from wheat cultivars Orvantis, Caphorn and Isengrain, similar in composition and Farinograph parameters, were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号