首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
林业   10篇
农学   5篇
  11篇
综合类   6篇
农作物   6篇
水产渔业   11篇
畜牧兽医   34篇
园艺   1篇
植物保护   13篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1974年   1篇
  1973年   2篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有97条查询结果,搜索用时 406 毫秒
1.
Mannheimia haemolytica is an important etiological agent of pneumonia in domestic sheep (DS, Ovis aries). Leukotoxin (Lkt) produced by this organism is the principal virulence factor responsible for the acute inflammation and lung injury characteristic of M. haemolytica caused disease. Previously, we have shown that the leukocyte-specific integrins, beta(2) integrins, serve as the receptor for Lkt. Although it is certain that CD18, the beta subunit of beta(2) integrins, mediates Lkt-induced cytolysis of leukocytes, it is not clear whether CD18 of all three beta(2) integrins, LFA-1, Mac-1 and CR4, mediates Lkt-induced cytolysis of DS leukocytes. Since polymorphonuclear leukocytes, which express all three beta(2) integrins, are the leukocyte subset that is most susceptible to Lkt, we hypothesized that all three beta(2) integrins serve as the receptor for Lkt. The objective of this study was to determine whether DS LFA-1 serves as a receptor for M. haemolytica Lkt. We cloned the cDNA for DS CD11a, the alpha subunit of LFA-1, and co-transfected it along with the previously cloned cDNA for DS CD18, into a Lkt-non-suceptible cell line. Transfectants stably expressing DS LFA-1 were bound by Lkt. More importantly, Lkt lysed the DS LFA-1 transfectants in a concentration-dependent manner. Pre-incubation of Lkt with a Lkt-neutralizing monoclonal antibody (MAb), or pre-incubation of transfectants with MAbs specific for DS CD11a or CD18, inhibited Lkt-induced cytolysis of the transfectants. Exposure of LFA-1 transfectants to low concentrations of Lkt resulted in elevation of intracellular [Ca(2+)](i). Taken together, these results indicate that DS LFA-1 serves as a receptor for M. haemolytica Lkt.  相似文献   
2.
3.
The present study describes an efficient method for in vitro plant regeneration in B. arundinacea through axillary shoot bud proliferation. Nodal explants were excised, cultured on MS medium containing different concentrations of 6-benzylaminopurine (BAP), kinetin (KIN) (0.5–5.0 mg l?1) alone and/or in combinations with KIN/BAP (0.5 mg l?1). The highest frequency (91.5 %) of multiple shoot bud induction with maximum number of shoots (85 shoots/explant) was noticed on MS medium + 3.0 mg l?1 BAP + 0.5 mg l?1 KIN. The regenerated multiple shoots were elongated on MS medium + 4.0 mg l?1 KIN + 2.0 mg l?1 gibberellic acid (GA3) with maximum shoot length (4.9 cm). The elongated shoots were transferred to MS medium containing indole-3 butyric acid (IBA; 0.5–5.0 mg l?1) alone and/or in combination with 0.5 mg l?1 KIN and BAP. Highest frequency of rooting (75 %) was obtained on half-strength MS medium + 2.0 mg l?1 IBA + 0.5 mg l?1 KIN. After hardening, the plantlets were shifted to the green house and subsequently established in the field conditions with 90 % survival rate. random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic stability of the regenerants. RAPD profiles generated from the regenerated plants were found to be monomorphic, similar to the control. Results confirmed that the regenerated plants were true-to-type in nature and the developed micropropagation protocol could be used for large scale plant production of B. arundinacea.  相似文献   
4.
5.
6.
Murine cytomegalovirus infection of spleen cultures induced the production of a small (less than 10,000 molecular weight) immunosuppressive factor (VISF), which suppressed concanavalin-A mitogenesis in fresh mouse spleen cells, and in fresh human peripheral blood leukocytes. The factor did not affect the growth of two murine T-cell lines or of mouse fibroblasts. A similar factor was also found in the serum of infected mice, at the time of maximum immune suppression. The properties of VISF indicate that the mechanism of MCMV immune suppression is different from that caused by several other viruses which are important in human and veterinary medicine.  相似文献   
7.
Contagious caprine pleuropneumonia (CCPP) is a serious disease of goats, occasionally sheep and wild ruminants, caused by Mycoplasma capricolum subspecies capripneumoniae (Mccp). The disease is characterized by severe serofibrinous pleuropneumonia, very high morbidity (~100%), and mortality (80–100%). CCPP affects goats in more than 40 countries of the world thereby posing a serious threat to goat farming around the globe. The characteristic clinical signs of CCPP are severe respiratory distress associated with sero-mucoid nasal discharge, coughing, dyspnea, pyrexia, pleurodynia, and general malaise. In later stages, severe lobar fibrinous pleuropneumonia, profuse fluid accumulation in pleural cavity, severe congestion of lungs and adhesion formation is observed. Mycoplasmal antigen interactions with host immune system and its role in CCPP pathogenesis are not clearly understood. CCPP is not a zoonotic disease. Diagnosis has overcome cumbersome and lengthy conventional tests involving culture, isolation, and identification by advanced serological (LAT, cELISA) or gene-based amplification of DNA (PCR, RFLP, and hybridization) and sequencing. The latex agglutination test (LAT) is rapid, simple, and better test for field and real-time diagnosis applicable to whole blood or serum and is more sensitive than the CFT and easier than the cELISA. Moreover, the studies on antibiotic sensitivity and exploration of novel antibiotics (fluoroquinolones, macrolides) can help in better therapeutic management besides preventing menace of antibiotic resistance. Re-visiting conventional prophylactic measures focussing on developing novel strain-based or recombinant vaccines using specific antigens (capsular or cellular) should be the most important strategy for controlling the disease worldwide.  相似文献   
8.
9.
The channel catfish (Ictalurus punctatus, Rafinesque) ovary (CCO) cell line is the standard cell line used for channel catfish diagnostics. Next‐gen sequencing studies of a virus cultured in the CCO cells revealed mitochondrial sequences matching those of brown bullhead (Ameiurus nebulosus, Lesueur). Therefore, we systematically performed partial cytochrome oxidase 1 gene sequencing of several sources of the CCO cell line and all matched the brown bullhead and not the channel catfish.  相似文献   
10.
‘Gold standard’ OIE reference PCR assay was utilized to detect the presence of infectious spleen and kidney necrosis virus (ISKNV) in freshwater ornamental fish from Malaysia. From total of 210 ornamental fish samples representing 14 species, ISKNV was detected in 36 samples representing 5 fish species. All positive cases did not show any clinical signs of ISKNV. Three restriction enzymes analyses showed that the fish were infected by identical strains of the same virus species within Megalocytivirus genus. Major capsid protein (MCP) genes of 10 ISKNV strains were sequenced and compared with 9 other reference nucleotide sequences acquired from GenBank. Sequence analysis of MCP gene showed that all strains detected in this study were closely related to the reference ISKNV with nucleotide sequence identity that was ranging from 99.8% to 100%. In addition, phylogenetic analysis of MCP gene revealed that viruses from genus Megalocytivirus can be divided into three genotypes: genotype 1 include reference ISKNV and all other strains that were detected in this study, genotype 2 include viruses closely related to red sea bream iridovirus (RSIV), and genotype 3 include viruses closely related turbot reddish body iridovirus (TRBIV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号