首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
为了发掘更多控制小麦旗叶大小及穗部相关性状的QTL,以兰考906和小偃81创制的133个F6~F7重组自交系为试验材料,在6个环境下利用SSR标记对旗叶大小及穗部相关性状进行QTL定位。结果表明,有202对SSR标记被用于构建遗传连锁图谱,图谱覆盖小麦21条染色体,全长1 678.93cM,标记间平均距离8.30cM。采用完备区间作图法共检测到30个QTL,分布在1B、2A、3D、4A、4B、4D、5D、6A、6B、6D和7D染色体上。其中,旗叶宽QTL有7个,穗长QTL有9个,小穗数QTL有5个,穗粒数QTL有5个,小穗着生密度QTL有4个,不同环境下单个QTL可解释的表型变异率为4.94%~23.14%,有14个QTL的表型贡献率大于10%,有8个QTL可在2个或2个以上环境中被检测到。其中,Qflw-4A在3个环境中被检测到,贡献率为10.13%~20.77%,是控制旗叶宽的稳定主效QTL;Qsl-4D.2在4个环境中被检测到,贡献率为12.58%~23.14%,是控制穗长的稳定主效QTL;Qker-5D在2个环境中被检测到,贡献率为11.44%~14.32%,是控制穗粒数的稳定主效QTL。这3个稳定主效QTL可作为改良叶宽和增加穗粒数的功能QTL作进一步研究。  相似文献   

2.
春小麦旗叶大小相关性状的QTL定位分析   总被引:1,自引:0,他引:1  
为了发掘控制春小麦旗叶大小相关性状的QTL,以宁春4号/Drasdale构建的包含148个家系的RIL群体F8代为试验材料,在正常灌溉和不同干旱胁迫共3种处理下对小麦开花期旗叶长、宽、面积和周长进行了QTL定位。结果表明,共检测到相关加性QTL 22个,其中,控制旗叶面积的QTL有3个,控制旗叶长的QTL有5个,控制旗叶宽的QTL有9个,控制旗叶周长的QTL有5个,分布于1B、2D、3B、4B、7A、7B和7D染色体上,单个QTL的贡献率在6.58%~39.83%之间。其中,qFLW-2D-2.T1在T1和T3处理下均能够检测到,qFLW-7D.T1在T1和T2处理下也均能够检测到,说明这2个QTL表达不依赖于水分条件,属于稳定表达的QTL。其他QTL只在一种处理下能够检测到,说明其表达依赖于水分条件。同时,本研究也检测到了在不同处理下同时控制2种或3种性状的QTL,推测这些区域的QTL可能为一因多效QTL,但有待于进一步验证。  相似文献   

3.
为定位大豆蛋白质含量稳定性QTL,从而为培育高蛋白大豆品种提供依据,本研究利用源自美国大豆Charleston和中国品种东农594杂交获得的147个株系组成的重组自交系群体,利用三种生态环境下三年数据估算的Shukla稳定性方差对大豆蛋白含量进行了遗传和QTL分析。结果表明,利用复合区间作图法(CIM)检测大豆蛋白稳定性QTL得到2个QTL,分别为qPRO1-1和qPRO17-1,位于连锁群A1和L上,贡献率分别为4.70%和5.73%,共解释10.43%的表型变异。利用混合区间作图法MIM检测到2对上位性QTL,互作染色体为A1×G和A1×A2,上位效应分别为0.19**和-0.22,贡献率为12.82%和17.42%,共解释30.24%表型变异。本实验分析多个环境下的数据,考虑到了QTL 与环境的互作效应,在三种环境条件下分析QTL,检测到了在不同环境下可以稳定出现的QTL位点。控制大豆蛋白含量的QTL位点,都表现出明显的上位性效应和GE互作效应。其中稳定性较好的QTL和公共图谱上定位的调控大豆蛋白质含量的QTL prot 1-7、cq oil003、oil8-1, prot 17-5、prot 2-1、prot 12-1等在区间上一致。  相似文献   

4.
不同种植密度下大豆产量性状的QTL分析   总被引:3,自引:0,他引:3  
利用大豆重组自交系soy01群体的255个家系为作图群体,在不同年份、不同种植密度下进行了大豆产量性状的QTL分析。结果表明,采用复合区间作图法,2年2种处理组合下检测到单株荚数、单株粒数、每荚粒数等5个产量性状相关QTL共43个,分布于A2、F、I等14个连锁群,其中qNP-15-1等3个QTL在4种环境中均检测到,qNP-19-1等5个QTL在3种环境中均检测到,qNP-1-1等10个QTL在2种环境中均检测到,为较稳定的QTL。每荚粒数QTL qNSP-19-1和qNSP-19-2在多种环境中均检测到,贡献率均超过60%,为稳定主效QTL;百粒重QTL qSW-19-1在4种环境中均检测到,贡献率均超过20%,为稳定主效QTL。这些稳定的主效QTL可应用于精细定位和分子标记辅助育种研究。  相似文献   

5.
水旱两种条件下向日葵产量相关QTL定位   总被引:1,自引:0,他引:1  
为获得向日葵抗旱基因位点,培育向日葵抗旱新品种,在已有的高密度连锁图谱基础上,利用Map QTL4.0软件,在水、旱两种条件下对187个RIL群体的产量相关性状进行QTL定位分析。结果表明,两种水分条件下共检测到40个产量相关性状QTL位点,干旱条件下检测到6个性状22个QTL,可解释6%~21.6%的表型变异;浇水条件下检测到4个性状18个QTL,可解释6.1%~18.2%的表型变异;其中10个QTL在两种水分条件下被重复检测到,这些QTL作用方向一致,在不同环境中稳定表达;此外,还检测到16个可能对耐旱性有直接贡献的差值QTL。56个QTL中遗传贡献率超过10%的主效位点11个。对这些QTL位点进一步验证,可为今后向日葵抗旱性分子辅助选择育种奠定基础。  相似文献   

6.
为进一步挖掘控制小麦穗长和旗叶长的QTL,以小偃81和西农1376构建的包含120个株系的F9∶10RIL群体为材料,于2016年10月至2017年6月和2017年10月至2018年6月分别在陕西杨凌和河南南阳(用2017YL、2017NY、2018YL和2018NY表示)进行试验,对4个环境下的穗长和旗叶长进行表型鉴定,并利用90K芯片构建的高密度遗传连锁图谱进行QTL定位。结果表明,所构建的遗传图谱覆盖了小麦21条染色体,图谱全长3 172.49 cM,平均图距0.57 cM。采用完备复合区间模型对4种环境下的表型值及BLUP育种值分别进行QTL定位,共检测到3个控制穗长的QTL,分布在2B、2D和5D染色体上;检测到2个控制旗叶长的QTL,均分布在5A染色体上,其中控制穗长的 Qsl.nwsuaf-2DQsl.nwsuaf-5D和控制旗叶长的 Qfll.nwsuaf-5A.1能够在多环境下稳定表达,为主效QTL,表型变异解释率分别为18.34%~22.51%、9.57%~14.94%和9.48%~16.36%。该结果可为小麦MAS育种、NIL构建、候选区域筛选及图位克隆等提供参考依据。  相似文献   

7.
分枝数是影响油菜产量的重要株型性状之一。为了有助于油菜分枝数的分子标记辅助育种,以甘蓝型油菜品系888-5(多分枝)和M083(少分枝)杂交形成的重组自交系(RIL)群体为材料,通过利用第一张油菜60KSNP芯片对群体进行高通量SNP分型,并结合单环境和多环境2种QTL检测方法对RIL群体在4个环境(武汉-2012、武汉-2013、扬州-2012和扬州-2013)下分枝数进行QTL定位。结果表明:共检测出18个分枝数QTL,分布于A2、A6、A7、C1和C4连锁群。其中11个QTL在2个以上环境下可重复检测到;有2个QTL与环境之间存在互作效应。主效QTL 2个(qBN2-3和qBNE2-1),分别在3个、4个环境下重复检测到,可解释的表型变异为13.12%~20.60%,2.80%~30.10%。qBNE2-1与环境存在互作效应。另外,通过利用SNP标记侧翼序列和油菜基因组比对作图,从3个QTL(qBN2-1、qBN7-6和q BN7-8,三者可解释的表型变异分别为19.40%~17.30%、5.70%~12.21%和7.88%~10.32%)的基因组区段内(分别为279kb、165kb和562kb)共筛选出4个与分枝数有关的候选基因,它们的拟南芥同源基因(分别为CUC2、PIN3、F23N20.8和PIN4)均参与拟南芥分枝数的分化或形态建成。  相似文献   

8.
为了发掘影响小麦旗叶相关性状的QTL,以小麦骨干亲本周8425B与优良品种小偃81构建的包含102个家系的重组自交系(Recombinant inbred line,RIL)为材料,采用小麦90KSNP基因芯片技术和SSR标记对其进行分子标记检测,构建含有全基因组SNP和SSR标记的高密度遗传图谱,并在4个环境下对小麦旗叶相关性状QTL进行检测。结果表明,所构建图谱含有6 949对多态性标记,其中,SNP标记6 910对,SSR标记39对,覆盖染色体总长度4 839.9cM,标记间平均距离0.7cM;A、B和D染色体组分别有2 085、4 677和187对标记,分别占总标记数的30.0%、67.5%和2.7%,标记间平均距离分别为1.0、0.6和0.8cM。采用完备复合区间作图法共检测到22个旗叶性状加性效应QTL,10个旗叶长QTL分布于2A、3B、4B、5A、6B和7B染色体上,解释表型变异7.900%~24.098%,除Qfll2A-1能在2个环境中检测到外,其余均为单环境QTL;4个旗叶宽QTL分布于2A、3A和5B染色体上,解释表型变异9.080%~16.540%,其中,Qflw2A-1在3个环境中均能检测到,解释表型变异12.483%~16.540%,为1个稳定的主效QTL;8个旗叶面积QTL分布于2A、3B、4B、5A、6B和7A染色体上,解释表型变异9.310%~30.498%,其中,3个QTL位于5A染色体上。此外,鉴定出3个分布于2A、5A和6B染色体上的QTL富集区段。  相似文献   

9.
利用分子标记进行水稻苗期耐冷性相关性状的QTLs研究   总被引:10,自引:0,他引:10  
用二九青和Yukihikari杂交后再经8代自交得到的79个重组自交系(RIL)群体为材料,构建了包含89个微卫星标记的分子连锁图谱.以低温下缺绿、枯萎死苗为指标对水稻苗期耐冷性数量性状位点(QTLs)进行了定位.在17℃,18℃和15~20℃ 3种不同低温处理情况下,以叶绿素含量为指标,共定位了11个QTLs,它们分别位于染色体1(2个),2(2个),3,5,6,7,8,9,12上;其中3个QTLs在3种环境中都能检测到,1个QTL在2种环境中检测到,而其余7个QTLs只能在1种环境中检测到;11个QTLs各自引起的表型变异为5.68%~27.42%.以枯萎死苗作为指标共定位了5个QTLs,分别位于染色体3,4,7,8,11上,各QTL控制的表型变异范围为7.65%~49.34%;其中位于染色体11上的RM224位点引起的表型变异达49.34%,是一个主效QTL.缺绿和枯萎死苗都是不耐冷品种受低温影响的表现,但从分子图谱定位的结果看,它们是由不同的基因位点控制的,没有连锁遗传关系.由此推断,水稻苗期耐冷性是一个由多基因控制的复杂遗传现象.  相似文献   

10.
玉米株型性状的QTL定位   总被引:11,自引:2,他引:9  
以玉米自交系L26和095组配的F2世代为作图群体,采用SSR分子标记技术和复合区间作图法对玉米茎粗等7个株型性状进行基因定位。共检出21个QTL,其中茎粗检测到1个位点(qSD1),穗位高、株高均检测到3个QTL位点(qEH1-qEH3、qPH1-qPH3),雄穗分枝数检测到5个QTL位点(qTBN1-qTBN5),叶片数检测到4个QTL位点(qLN1-qLN4),叶型系数检测到3个QTL位点(qLSC1-qLSC3),叶向值检测到2个QTL位点(qLOV1-qLOV2)。21个QTL中,qTBN1、qTBN4、qLN1、qLN3、qLN4这5个QTL解释表型变异率超过30%,表现出明显的主效QTL效应。研究还发现,有5个影响不同性状的QTL位于染色体上相同标记区间内或与相同标记连锁,分为Ch3-2和Ch8-1两个区段,表现出了成簇分布的特性。  相似文献   

11.
小麦抽穗期QTL及其与环境的互作   总被引:3,自引:0,他引:3  
为筛选稳定表达的小麦抽穗期QTL用于辅助选择,以旱选10号×鲁麦14的DH群体为试材,在四种环境下对抽穗期进行QTL。结果表明,该DH群体抽穗期呈连续性分布,表现为多基因控制的数量性状。四种环境下共检测到6个抽穗期加性QTLs,分别位于1B、1D、4D、6B、7B、7D染色体上,LOD值为3.13~10.88,贡献率在1.57%~6.72%之间,其中QHd-1D-1和QHd-7B与环境具有互作效应。共检测到10对上位性QTL位点,互作效应值为-0.39~0.423,表型贡献率在1.39%~4.86%之间,其中4对上位性位点与环境具有互作效应。  相似文献   

12.
基于小麦产量三要素的产量条件QTL分析   总被引:2,自引:0,他引:2  
为了从单个QTL水平上解析产量与产量三要素的遗传基础,利用花培3号和豫麦57杂交获得的168个家系的DH群体及其遗传图谱,在5个环境下对产量进行了非条件QTL分析和基于产量三要素(穗粒数、千粒重和单位面积穗数)的条件QTL分析,共检测到9个非条件QTL和28个条件QTL。其中,检测到2个主效QTL(QY.sdau-4D和QY.sdau-6D.2),它们可分别解释15.77%和10.16%的表型变异。分别检测到6个"一因多效"QTL和11个微效QTL;其中,QYsdau-4D.2通过影响单位面积穗数、穗粒数和千粒重而影响产量,QYsdau-2D.1和QYsdau-3A.1能提高单位面积产量但不影响穗粒数,即单位面积产量和穗粒数在该位点上几乎没有关联。本研究结果为通过分子设计聚合高产有利基因提供了理论基础,对培育单位面积产量大幅度提高的小麦新品种具有重要意义。  相似文献   

13.
Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.  相似文献   

14.
 在4个环境下种植直立穗粳稻品种秀水79与弯曲穗品种C堡及两者杂交后衍生得到的RIL群体254个株系并调查其穗角,运用主基因+多基因混合遗传模型对穗角性状进行遗传分离分析;运用基于混合线性模型的QTLNetwork 2.0软件和基于多元回归模型的WinQTLcart 2.5软件的复合区间作图法,对穗角性状进行QTL定位。结果发现,1)穗角性状受两对主基因+多基因共同控制,以主基因遗传为主;2)QTLNetwork 2.0检测到8个控制穗角性状的加性QTL,解释表型变异的0.01%~39.89%;WinQTLcart 2.5检测到12个控制穗角性状的加性QTL,可解释表型变异的2.83%~30.60%。检测到的所有QTL分布于第4、5、6、7、9、11染色体上,其中分布于RM3700-RM3600和RM5652-RM410区间的两个主效位点qPA9.2和qPA9.5,以及分布于RM257-OSR28区间的qPA9.7 在两种方法和4个环境下均检测到,减效等位基因来自秀水79;3)检测到8对加性×加性上位性互作位点,解释表型变异的0.36%~1.71%。检测到的各个加性和上位性位点均不存在显著的基因型与环境的互作。   相似文献   

15.
《Plant Production Science》2013,16(4):447-456
Abstract

Thirty-nine chromosome segment substitution lines (CSSLs) population derived from a Koshihikari / Kasalath cross was used for quantitative trait locus (QTL) analysis of plant type in rice (Oryza sativa L.). Putative rough QTLs (26.2~60.3cM of Kasalath chromosomal segments) for culm length, plant height, panicle number, chlorophyll content of flag leaf blade at heading and specific leaf weight, were mapped on the several chromosomal segments based on the comparison of CSSLs with Koshihikari in the field experiment for 3 years. In order to verify and narrow QTLs detected in CSSLs, we conducted QTL analyses using F2 populations derived from a cross between Koshihikari and target CSSL holding a putative rough QTL. The qPN-2, QTL for panicle number was mapped on chromosome 2. In traits of flag leaf, the qCHL-4-1 and qCHL-4-2 for chlorophyll content was mapped on chromosome 4, and the qSLW-7 for specific leaf weight on chromosome 7. All QTLs were detected in narrow marker intervals, compared with rough QTLs in CSSLs. The qPN-2, qCHL-4-1 and qCHL-4-2 had only additive effect. On the other hand, the qSLW-7 showed over-dominance. It could be emphasized that QTL analysis in the present study with the combination of CSSLs and backcross progeny F2 population can not only verify the rough QTLs detected in CSSLs but also estimate allelic effects on the QTL.  相似文献   

16.
以豫86×豫M1-7构建的RIL群体为作图群体,结合SNP和基因芯片技术对RIL群体进行基因型分析,构建连锁图谱,进行玉米开花期相关性状的QTL鉴定。通过对2年3点玉米开花期相关性状QTL分析,共鉴定到48个开花期性状相关的QTLs,包括18个抽雄期QTLs、16个吐丝期QTLs和14个散粉期QTLs。这些QTLs分别分布在第1、2、3、5、6、7、9、10号染色体上,单个表型贡献率范围在1.67%~20.33%;有一个QTL在3个环境下稳定检测到,3个QTL在2个环境下稳定检测到;有控制吐丝期的qDTS3-1(2018年郑州)和qDTS3-1(2019年郑州)在两个环境下稳定检测到,且贡献率为15.44%和10.12%;一个贡献率达到13.01%的环境性稳定性位点qDTA9-3,可以供分子标记辅助育种选育目标性状。  相似文献   

17.
用自交系Mo17与黄早四构建的RIL群体239个株系及双亲为研究材料,在高氮(施N300kg/hm2)和低氮(不施N)条件下,测定株高、穗位高、单株总叶数、穗位叶长、穗位叶宽和穗位叶面积等株型相关性状。采用QTLMapper1-6统计软件检测控制这些性状的加性效应QTLs和加性×加性上位性QTLs,共检测到19个加性效应QTLs和14对上位性QTLs,定位在玉米所有染色体上,其中1个加性效应QTL控制株高;3个加性效应QTLs和3对上位性效应控制穗位高;4个加性效应QTLs和3对上位性效应与单株总叶数有关;有4个加性效应QTLs和3对上位性效应影响穗位叶长;2个加性效应QTLs和3对上位性效应控制穗位叶宽;5个加性效应QTLs和2对上位性效应控制穗位叶面积。对应用分子标记辅助育种选育玉米株型的可能性进行了讨论。  相似文献   

18.
《Plant Production Science》2013,16(2):224-232
Abstract

In rice (Oryza sativa L.), the maintenance of high photosynthetic rate of flag leaves and the carbon remobilization from leaf sheaths after heading is a critical physiological component affecting the yield. To clarify the genetic basis of RuBisCO content of the flag leaf, a major determinant of photosynthetic rate, and non-structural carbohydrate (NSC) concentration in the third leaf sheath at heading, we carried out quantitative trait loci (QTL) analysis with 39 Koshihikari/Kasalath chromosome segment substitution lines (CSSLs) and backcross progeny F2 population derived from target CSSL holding the QTL/Koshihikari in the field. QTLs for RuBisCO content and NSC concentration at heading were detected between R2447-C1286 and R2447-R716 on chromosome 10, respectively, by comparing Koshihikari with four CSSLs for chromosome 10 (SL-229, -230, -231 and -232). The progeny QTL for RuBisCO content and for NSC concentration at heading qRCH-10 and qNSCLSH-10-1, respectively, were detected at similar marker intervals between RM8201 and RM5708. In addition, QTLs for RuBisCO content at 14 d after heading, qRCAH-10-1 and qRCAH-10-2, were detected in regions different from that of qRCH-10. No QTL for NSC concentration at 14 d after heading was detected between RM8201 and R716, the region analyzed in this study. The QTLs qRCH-10 and qRCAH-10-1 for RuBisCO content would have additive effects. These QTLs for RuBisCO content and NSC concentration newly found using CSSLs and their backcross progeny F2 population should be useful for better understanding the genetic basis of source and temporary-sink functions in rice and for genetic improvement of Koshihikari in terms of their functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号