首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
农学   1篇
综合类   2篇
农作物   5篇
  2023年   1篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
以野生型大豆ZYD00006(供体亲本)与黑龙江省主栽品种绥农14(轮回亲本)所构建的回交导入系(1204株)为研究材料,利用WinQTL2.5的复合区间作图法(CIM)在9个连锁群定位了16个与蛋白质含量相关的QTL(14个正效应,2个负效应);导入系群体经过严格的蛋白质含量筛选鉴定,得到10个蛋白质含量性状明显大于轮回亲本的导入系株行。利用这10个高蛋白含量株行(选择群体)结合随机对照群体,通过基于遗传搭车原理的卡方分析,检测到分布于10个连锁群上的17个与大豆蛋白质含量相关的标记位点,对蛋白质含量表现为正效应。两种方法共同检测到7个QTL。这些材料和位点将为高蛋白含量相关基因克隆及分子辅助育种提供重要的材料基础和标记信息。  相似文献   
2.
为挖掘野生大豆优异稀有基因,2006年至今以栽培大豆绥农14(轮回亲本)与野生大豆ZYD00006(供体 亲本)为双亲材料,经杂交、回交,标记辅助选择构建获得一套覆盖野生大豆全基因组的染色体片段导入系(代换 系)。该群体共 192个株系,包含野生大豆目标导入片段 237个,平均每个连锁群的导入片段个数为 11.85个;导入 片段总长度1865.17 cM,覆盖整个基因组的82.43%。其中L连锁群野生大豆基因组覆盖率最高,为100%,N连锁群 覆盖最低为 53.17%。最长导入片段 43.30 cM,最短导入片段 0.22 cM。高度一致的遗传背景对大豆重要基因及野 生大豆特有优异基因挖掘具有重要意义。同时,野生资源的引入极大丰富了栽培大豆的遗传基础,进而使得导入 系后代表型变异丰富,为大豆遗传育种提供重要的材料基础。  相似文献   
3.
利用野生型大豆ZYD00006(供体亲本)与主栽品种绥农14(轮回亲本)所构建的高世代回交导入系,经过严格的百粒重筛选鉴定,得到43个百粒重性状明显小于轮回亲本的导入系个体。利用这套选择群体结合随机对照群体和基因型分析,通过基于遗传搭车原理的卡方分析,检测到分布于7个连锁群上的9个与大豆小粒性状相关的QTL位点,对小粒性状表现为正效应,为大豆小粒性状分子辅助育种提供有用的分子标记。  相似文献   
4.
为定位大豆蛋白质含量稳定性QTL,从而为培育高蛋白大豆品种提供依据,本研究利用源自美国大豆Charleston和中国品种东农594杂交获得的147个株系组成的重组自交系群体,利用三种生态环境下三年数据估算的Shukla稳定性方差对大豆蛋白含量进行了遗传和QTL分析。结果表明,利用复合区间作图法(CIM)检测大豆蛋白稳定性QTL得到2个QTL,分别为qPRO1-1和qPRO17-1,位于连锁群A1和L上,贡献率分别为4.70%和5.73%,共解释10.43%的表型变异。利用混合区间作图法MIM检测到2对上位性QTL,互作染色体为A1×G和A1×A2,上位效应分别为0.19**和-0.22,贡献率为12.82%和17.42%,共解释30.24%表型变异。本实验分析多个环境下的数据,考虑到了QTL 与环境的互作效应,在三种环境条件下分析QTL,检测到了在不同环境下可以稳定出现的QTL位点。控制大豆蛋白含量的QTL位点,都表现出明显的上位性效应和GE互作效应。其中稳定性较好的QTL和公共图谱上定位的调控大豆蛋白质含量的QTL prot 1-7、cq oil003、oil8-1, prot 17-5、prot 2-1、prot 12-1等在区间上一致。  相似文献   
5.
多环境条件下大豆倒伏性相关形态性状的QTL分析   总被引:1,自引:0,他引:1  
【目的】定位大豆倒伏性相关形态性状的QTL为培育抗倒伏性高的品种提供依据。【方法】以美国大豆品种Charleston为母本,东北农业大学大豆品系东农594为父本及其F2:16-F2:18的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增,并构建遗传图谱。在三年两个地点对大豆的主茎节数、茎粗和茎秆重性状进行调查及QTL分析。【结果】共检测到16个主茎节数QTL,分别位于A1、B1、C2、D1a、D2、F、G、H和N连锁群上;检测到10个茎粗QTL,分别位于A1、B1、C2、D1a、E和G连锁群上;检测到15个茎秆重QTL,分别位于A1、A2、C2、D1a、D1b和G连锁群上。在得到的这些QTL中,2种算法都能检测到5个主茎节数QTL,解释表型变异范围为8.6%-27.0%;1个茎粗QTL,解释表型变异范围为9.0%-11.0%;6个茎秆重QTL,解释表型变异范围为6.0%-39.0%。在2年以上能被检测到3个主茎节数QTL,解释表型变异范围为8.0%-60.2%;2个茎秆重QTL,解释表型变异范围为10.0%-23.0%;2年以上未重复检测到茎粗QTL。【结论】通过比较定位的主茎节数、茎粗和茎秆重QTL,发现这些性状之间存在较大的遗传相关性。  相似文献   
6.
多种环境下大豆单株粒重QTL的定位与互作分析   总被引:1,自引:0,他引:1  
定位大豆单株粒重QTL、分析QTL间的上位效应及QTL与环境互作效应, 有利于大豆单株粒重遗传机理的深入研究。利用147个F2:14~F2:18 RIL群体, 5年2点多环境下以CIM和MIM方法同时定位大豆单株粒重QTL, 检测到17个控制单株粒重的QTL, 分别位于D1a、B1、B2、C2、F、G和A1连锁群上, 贡献率为6.0%~47.9%;用2种方法同时检测到3个QTL, 即qSWPP-DIa-3、qSWPP-F-1和qSWPP-D1a-5, 贡献率为6.3%~38.3%;2年以上同时检测到4个QTL, 即qSWPP-DIa-1、qSWPP-DIa-2、qSWPP-B1-1和qSWPP-G-1, 贡献率为8.1%~47.9%;利用QTLMapper分析QE互作效应和QTL间上位效应, 7种环境下的数据联合分析得到1个QE互作QTL和4对上位效应QTL, 贡献率和加性效应都较小。在分子标记辅助育种中应该同时考虑主效QTL及各微效QTL之间的互作。  相似文献   
7.
多环境条件下大豆倒伏性相关形态性状的QTL分析(英文)   总被引:1,自引:0,他引:1  
[目的]定位大豆倒伏性相关形态性状的QTL为培育抗倒伏性高的品种提供依据。[方法]以美国大豆品种Charleston为母本,东北农业大学大豆品系东农594为父本及其F2:16-F2:18的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增,并构建遗传图谱。在三年两个地点对大豆的主茎节数、茎粗和茎秆重性状进行调查及QTL分析。[结果]共检测到16个主茎节数QTL,分别位于A1、B1、C2、D1a、D2、F、G、H和N连锁群上;检测到10个茎粗QTL,分别位于A1、B1、C2、D1a、E和G连锁群上;检测到15个茎秆重QTL,分别位于A1、A2、C2、D1a、D1b和G连锁群上。在得到的这些QTL中,2种算法都能检测到5个主茎节数QTL,解释表型变异范围为8.6%—27.0%;1个茎粗QTL,解释表型变异范围为9.0%-11.0%;6个茎秆重QTL,解释表型变异范围为6.0%-39.0%。在2年以上能被检测到3个主茎节数QTL,解释表型变异范围为8.0%-60.2%;2个茎秆重QTL,解释表型变异范围为10.0%-23.0%;2年以上未重复检测到茎粗QTL。[结论]通过比较定位的主茎节数、茎粗和茎秆重QTL,发现这些性状之间存在较大的遗传相关性。  相似文献   
8.
大豆种子硬实度关乎食品与饲料加工。为提高大豆种子硬实度分子标记辅助选择的效率,发现相关候选基因,利用染色体片段代换系(chromosome segment substitution lines, CSSL)对大豆种子硬实性进行了两年的QTL定位研究,结合前人得到的25个种子硬实性QTL,利用MCScanX对整个大豆基因组进行分析,生成共线性区组,评估大豆种子硬实性QTL之间的共线性,确定了位于Gm02片段的中心QTL。利用多个数据库分析hub-QTL区段的基因,锚定了8个与大豆种子硬实性相关的候选基因。从CSSL群体中选择种子硬实性不同的两个品系和轮回亲本,用于随后的实时荧光定量PCR分析,发现候选基因Glyma.02G269400和Glyma.02G269500在CSSL群体中硬实性不同的2个品系及轮回亲本绥农14中的表达差异显著。Glyma.02G262600在绥农14中的相对表达量约是CSSL-136的5倍,而在CSSL-200中表达量中等,推测该基因抑制大豆种皮的形成。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号