首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高光谱成像技术(400~1 000 nm)对苹果轻微损伤进行快速识别及无损检测。采集苹果正常及不同损伤时间的高光谱图像,选择图像中合适的区域作为感兴趣区域并提取平均光谱反射率及图像熵信息,将采集的样本按2∶1的比例分为训练集和测试集。使用RELIEF算法基于光谱平均反射率及图像熵信息提取了8个特征波段(17、30、35、51、61、66、94和120),分别基于全波段和特征波段进行极限学习机(extreme learning machine, ELM)建模分析,并与支持向量机(support vector machine, SVM)和K-均值聚类算法进行比较。结果表明,基于全波段的ELM模型最终测试集识别率为94.44%,基于特征波段的RELIEF-极限学习机(Re-ELM)模型识别率为96.67%,基于特征波段的Re-SVM及Re-K均值模型的最终测试集识别率分别为92.22%和91.67%,证实了Re-ELM是一种更为有效的苹果损伤分类判别方法。在此基础上,基于图像处理技术和特征波段提出了一种苹果轻微损伤高光谱检测算法,使用该算法针对特征波段进行独立成分分析(independent component analysis, ICA)变换,选取ICA第3成分图像进行自适应阈值分割,从而获得损伤图像。对全部高光谱图像进行检测表明,该算法的最终识别率超过94%,说明该算法能够较为有效地识别苹果损伤区域。  相似文献   

2.
以喷洒不同浓度毒死蜱的鲜冬枣为研究对象,研究近红外光谱技术结合偏最小二乘法(PLS)和连续投影算法(SPA)检测鲜冬枣表面农药残留的方法。运用AntarisⅡ近红外光谱仪对喷洒不同浓度的毒死蜱的鲜冬枣样品进行扫描,首先建立全波段PLS模型,然后应用SPA提取特征波长,作为PLS的输入变量,建立SPA-PLS模型,将全波段PLS模型和SPA-PLS模型进行比较。经SPA提取5个特征波长建立的模型,使用变量数仅占全波段的0.32%,但建立的冬枣表面农药残留模型的准确度和精度优于全波段所建立的模型。近红外光谱技术结合SPA和PLS建立鲜冬枣表面不同浓度毒死蜱农药残留的模型是可行的,同时SPA算法简化模型复杂度,提高模型精度及稳定性。  相似文献   

3.
高光谱仪器采集光谱数据的波长范围大、波段数据多。如果将这些波段作为模型的输入,数据量大、计算太复杂,必然会影响建模的速度,因此有必要采取合适的算法对高光谱图像的光谱数据进行降维处理。采用主成分分析(principal component analysis,简称PCA)、逐步判别分析、连续投影(successive projections algorithm,简称SPA)方法对马铃薯的光谱数据进行降维处理。主成分分析选出8个特征波段,逐步判别分析选出8个特征波段,连续投影法选出6个特征波段。将降维后的特征波段作为输入,分别建立支持向量机(support vector machine,简称SVM)模型,这3种降维方法的识别准确率均为100%,由于连续投影法选择的波段数少,所以连续投影法是一种较好的降维方法。  相似文献   

4.
为满足快速无损的大米产地确证需求,采集吉林省梅河口市水稻主产区及松原、大安、辉南等其他水稻产区共990个大米样本的高光谱图像(400~1 000 nm)作为研究对象,利用多元散射校正(MSC)处理方法对光谱进行预处理。采用多层感知机(MLP)、极限学习机(ELM)与在线序列极限学习机(OS-ELM)算法,分别基于全波段高光谱数据以及经多维尺度分析(MDS)方法降维后的数据建立产地确证模型。结果表明,基于全波段高光谱数据的OS-ELM模型分类性能最好,准确率达到98.3%。经MDS处理后,输入的数据变量减少了96.6%,MDS-OS-ELM模型准确率稳定在97.4%。对三种模型的训练时间进行对比分析,OS-ELM训练时间明显优于MLP,在分批次获取数据时训练时间优于ELM。为大米产地确证提供了一种高效、准确、稳定的方法。  相似文献   

5.
为满足快速无损的大米产地确证需求,采集吉林省梅河口市水稻主产区及松原、大安、辉南等其他水稻产区共990个大米样本的高光谱图像(400~1 000 nm)作为研究对象,利用多元散射校正(MSC)处理方法对光谱进行预处理。采用多层感知机(MLP)、极限学习机(ELM)与在线序列极限学习机(OS-ELM)算法,分别基于全波段高光谱数据以及经多维尺度分析(MDS)方法降维后的数据建立产地确证模型。结果表明,基于全波段高光谱数据的OS-ELM模型分类性能最好,准确率达到98.3%。经MDS处理后,输入的数据变量减少了96.6%,MDS-OS-ELM模型准确率稳定在97.4%。对三种模型的训练时间进行对比分析,OS-ELM训练时间明显优于MLP,在分批次获取数据时训练时间优于ELM。为大米产地确证提供了一种高效、准确、稳定的方法。  相似文献   

6.
为实现对冷却羊肉表面细菌总数(TVC)的无损检测,采用高光谱技术结合数学建模的方法,通过高光谱成像系统采集波长范围为400~1 100 nm冷却羊肉样本的高光谱信息,并采用基于极限学习机(ELM)及其改进算法建立冷却羊肉表面细菌总数预测模型,分别实现了基本的极限学习机(ELM)、核极限学习机(KELM)以及遗传算法优化核极限学习机(GA-KELM) 3种建模方法。通过试验验证,3种建模方法中,GA-KELM模型预测效果最佳,其训练集样本和预测样本的相关系数分别为Rc=0. 983 7,Rp=0. 930 6,均方根误差为RMSEc=0. 001 6,RMSEp=0. 001 6,从而验证了该方法的有效性。  相似文献   

7.
[目的]本文旨在快速测定植物体内叶绿素含量,以提高无损测定叶绿素的准确性。[方法]以绿萝叶片为研究对象,提出一种串联融合高光谱特征与纹理特征的叶绿素SPAD值的无损检测方法。采集320片绿萝叶片样本在400~900 nm波段的光谱信息,使用Savitzky-Golay卷积平滑对原始高光谱图像进行预处理,利用连续投影算法(successive projections algorithm, SPA)选取出10个特征波段,对绿萝叶片高光谱图像中的RGB图像采用灰度共生矩阵算法(gray-level co-occurrence matrix, GLCM)提取其纹理特征,采用串联方法融合高光谱特征与纹理特征得到融合特征,分别建立单一特征和融合特征的误差反向传输人工神经网络(back propagation artificial neural network, BPANN)和支持向量机回归(support vector machine regression, SVR)模型。[结果]单一使用特征光谱数据或图像纹理数据作为特征值建立的预测模型,综合性能不稳定;基于串联融合特征的预测模型准确率有明显提升。基于串联融合特征的SVR模型具有最佳的预测结果,校正集决定系数R~2为0.961 2,预测集决定系数R~2为0.957 1。[结论]高光谱特征与纹理特征的融合特征可以提高叶绿素回归预测模型的准确性,为叶绿素含量无损检测提供了重要参考。  相似文献   

8.
为解决在土壤速效钾含量的高光谱定量预测分析过程中,光谱数据维数高、冗余度较大等问题,提出了一种结合K均值算法(K-means)和连续投影算法(SPA)的高光谱特征波段选择方法。该算法首先将全波段数据分别根据不同的距离度量进行K-means聚类分析,之后对聚类后的每个波段簇分别使用SPA法提取其中的特征波段。对全波段组合、传统SPA法提取的特征波段组合以及结合K-means聚类与SPA法提取的特征波段组合分别建立土壤速效钾含量的BP神经网络预测模型,通过对比模型预测效果来比较特征波段选择方法的性能。以盐城市348份土壤样品进行试验,结果表明,结合K均值算法与连续投影算法的特征波段选择方法可以有效地解决光谱预测分析过程中的数据冗余问题,实现对土壤速效钾含量快速精确预测分析。  相似文献   

9.
基于高光谱成像技术的茄子叶片灰霉病早期检测   总被引:2,自引:0,他引:2  
为建立基于高光谱成像技术的茄子叶片灰霉病早期检测方法,利用高光谱成像系统获取120个茄子叶片在380~1031nm范围的高光谱图像数据,通过主成分分析(PCA)对高光谱数据进行降维,并从中优选出3个特征波段下的特征图像,截取200×150的感兴趣区域图像(ROI),并从每幅特征图像中分别提取均值、方差、同质性、对比度、差异性、熵、二阶矩和相关性等8个基于灰度共生矩阵的纹理特征变量,通过连续投影算法(SPA)提取13个特征变量, 利用最小二乘支持向量机(LS‐SVM)构建茄子叶片灰霉病早期鉴别模型,模型判别准确率为97.5%.说明高光谱成像技术可以用于茄子叶片灰霉病的早期检测.  相似文献   

10.
【目的】研究应用高光谱成像技术无损检测生长发育后期苹果糖度的可行性。【方法】以生长发育后期的"富士"苹果为对象,基于采集到的波长900~1 700nm高光谱数据,建立预测苹果糖度的偏最小二乘(PLS)、支持向量机(SVM)和极限学习机(ELM)模型,并比较主成分分析(PCA)和连续投影算法(SPA)2种数据压缩或特征波提取方法对预测模型精度的影响。【结果】采用PCA方法可将全光谱压缩至9个主成分,采用SPA从全光谱的230个波长中提取出了13个特征波长,两者相比,SPA能更有效地提高模型预测能力。预测生长发育后期苹果糖度的最佳模型为基于SPA的PLS模型,其预测集相关系数为0.945,均方根误差为0.628°Brix。【结论】高光谱图像技术可以用于生长发育后期苹果糖度的无损检测,该技术的应用将有助于指导苹果的种植和适时采收。  相似文献   

11.
双孢蘑菇疣孢霉病是由有害疣孢霉菌Mycogone perniciosa引起的、破坏性极强的真菌类病害,且该病害检测困难耗时,往往导致菇房绝收,菇农收益损失严重。早发现、早处理能够有效解决病害带来的经济损失和农药残留超标等质检问题。因此,本研究将能够快速无损检测的高光谱成像技术应用到双孢蘑菇病害早期鉴别。以双孢蘑菇菌Agaricus bisporus子实体为试材,对健康染病双孢蘑菇生长早期子实体样本采集菌盖的全波段(401~1 046nm)可见/近红外高光谱图像信息,利用多元散射校正(MSC)进行预处理,采用决策树(DT)提取特征波段,对比随机森林(RF)和极限学习机(ELM)两种模型对健康和染病双孢蘑菇鉴别准确度。利用DT选取401.00、951.59、978.09、1 006.59和1 044.90nm为鉴别病害的特征波段。对比RF和ELM所建模型效果,得到MSC-DT-ELM模型检测效果最优,测试集和预测集总体样本鉴别准确度分别为92.39%和91.32%。结果表明,该模型可以有效提高基于全波段的双孢蘑菇疣孢霉病早期的鉴别准确度,得到基于高光谱成像技术的便捷准确鉴别双孢蘑菇病害早期的模型,同时,为进一步开发双孢蘑菇病害早期的多光谱设备提供了理论依据和方法。  相似文献   

12.
随着工业化的不断推进,土壤重金属污染情况十分严重。重金属污染对于环境保护,人类安全都有很大的影响。砷作为一种毒性很强的重金属元素,对其进行反演研究,这对环境保护有着重要意义。传统的土壤重金属含量检测方法多为繁杂的实验室化学处理方法,耗费大量时间且成本高昂。为研发一种快速、准确检测土壤砷含量的方法,首先在可见光-近红外光波段获得原始反射光谱,使用三波段光谱指数分析波段间的相互作用,利用相关系数法获得最优的光谱参数组合,从而提取优质光谱特征。双隐含层极限学习机(TELM)是一种前馈神经网络模型。TELM在单隐含层极限学习机的基础上引入了新的隐含层和学习机制,有较高的性能。但是由于TELM第一隐含层参数是随机获得的,容易导致模型的不稳定,利用粒子群优化(PSO)算法对该层参数进行寻优。PSO是一种经典的智能优化算法,具有很强的全局搜索能力。针对PSO容易陷入局部最优点的缺点,引入新的交叉策略,通过该交叉策略,可以帮助其摆脱局部最优,并提出基于三波段光谱指数和交叉粒子群算法的双隐含层极限学习机混合模型(TPC-TELM)。为验证模型的有效性,将其与多个机器学习模型(如单层极限学习机和TELM等...  相似文献   

13.
为解决传统的种子活力检测方法存在耗时长、损伤种子等问题,实现种子活力的快速无损检测,分别利用机器学习和深度学习算法结合高光谱成像技术构建玉米种子3个活力梯度分类模型,通过人工老化方式将1 012粒玉米种子分为3个活力梯度样本,采集其高光谱数据后通过卷积平滑(SG)和多元散射校正(MSC)去除高光谱噪声,分别采用主成分分析(PCA)、连续投影算法(SPA)进行光谱特征降维,再从降维后的波段中抽取1 156、1 191和1 463 nm 3个波段合成假彩色图像,用局部二值模式(LBP)提取感兴趣区域的纹理特征,并与纯光谱特征融合。分别基于纯光谱特征构建决策树(DT)和支持向量机(SVM)模型和融合特征建立随机森林(RF)、SVM和极端梯度提升树(XGBoost)模型等机器学习模型。将假彩色图像输入ResNet18、MobileNetV2、DenseNet121、Efficientb0、Efficientb2等5个深度学习模型中进行玉米种子活力预测。结果显示,就机器学习方法而言,针对纯光谱特征表现最好的是PCA-SVM模型,其测试集准确率为92.5%;针对融合特征表现最好的是SVM模型,其测...  相似文献   

14.
花青素(Anthocyanin)是玉米体内的重要色素,对花青素含量的便捷、无损估测对监测玉米长势具有重要意义。利用关中地区拔节期、大喇叭口期、抽雄期以及乳熟期玉米冠层叶片Anth值及高光谱数据建立多个单因素模型和多因素模型。结果表明,不同生育期玉米叶片原始光谱特征总体一致、局部不同。变换光谱的特征波段与Anth值相关性优于原始光谱,其中一阶导数光谱特征波段最优。连续投影算法(SPA)降维能力较好,筛选出的建模参数在2~27个。最优单因素模型与多元性线性回归模型精度均为抽雄期最优,拔节期和大喇叭口期次之,乳熟期最差。所有模型中,抽雄期基于一阶导数光谱的麻雀搜索算法-极限学习机回归(SSA-ELMR)模型精度最佳,该模型建模与验证R2分别为0.847、0.895,相应nRMSE为6.44%和7.21%。本研究结果表明抽雄期是玉米叶片花青素含量反演的最佳时期,极限学习机能进一步提升传统模型精度。  相似文献   

15.
以博斯腾湖湖滨绿洲为研究区,利用实测棕漠土有机碳含量与高光谱(350~2 500 nm)数据,应用竞争性自适应重加权采样算法(CARS)、连续投影算法(SPA)、竞争性自适应重加权采样-连续投影算法(CARS-SPA)筛选棕漠土有机碳含量响应的高光谱特征波段,分别采用全波段和特征波段结合随机森林(RF)模型构建棕漠土有机碳含量估算模型。结果表明:博斯腾湖湖滨绿洲棕漠土0~50.0 cm土层有机碳含量为1.40~40.92 g/kg,平均值为14.20 g/kg,变异系数为55.54%,呈中等变异水平。CARS、SPA、CARS-SPA等算法筛选出的棕漠土有机碳含量响应特征波段分别为122个、11个和10个。基于CARS-SPA算法筛选出的特征波段数据输入RF模型估算效果最好,验证集检验的决定系数(R2)、相对分析误差(RPD)、均方根误差(RMSE)分别为0.85、2.59和2.72 g/kg,该方法能有效减少光谱数据冗余、提高模型估算精度和运行效率。本研究结果为研究区棕漠土有机碳含量的估算提供参考。  相似文献   

16.
目的 结合传统与现代农业病虫害监测的优缺点,探索通过无人机高光谱遥感技术检测出患病的柑橘植株、通过人工田间调查方式判断其患病种类及患病程度的病虫害监测方法。方法 使用无人机获取原始高光谱图像,经过光谱预处理和特征工程后,采用连续投影算法提取对柑橘患病植株分类贡献值最大的特征波长组合,基于全波段使用BP神经网络和XgBoost算法、基于特征波段使用逻辑回归和支持向量机算法,建立分类模型。结果 基于全波段的BP神经网络和XgBoost算法的ROC曲线下面积(Area under curve,AUC)分别为0.883 0和0.912 0,分类准确率均超过95%;提取出698和762 nm的特征波长组合,基于特征波长使用逻辑回归和支持向量机算法建立的分类模型召回率分别达到了93.00%和96.00%。结论 基于特征波长建模在患病样本分类中表现出很高的准确率,证明了特征波长组合的有效性。本研究结果可为柑橘种植园的病虫害监测提供一定的数据和理论支撑。  相似文献   

17.
为了快速无损检测分析小麦蛋白质含量,构建近红外光谱最优小麦蛋白质定量检测分析模型。利用一阶S-G平滑算法+SNV算法对光谱进行预处理。使用连续投影算法(Successive projections algorithm, SPA)提取光谱中的特征波段点,使全谱图的141个波段点降低到17个特征波段点。在选择的17个特征波段点基础上分别建立偏最小二乘回归(Partial least regression, PLSR)模型、支持向量机(Support vector machine, SVM)模型、多元线性回归(Multiple linear squares regression, MLR)模型和主成分回归(Principal component regression, PCR)模型。在构建的4种小麦蛋白质含量预测模型中,MLR预测分析模型的验证集均方根误差(RMSEV)和校正集均方根误差(RMSEC)最小,验证集相关系数(r_v)和校正集相关系数(r_c)最大,其r_v=0.968,r_c=0.976,RMSEV=0.300,RMSEC=0.275。因此,相比于其他3种检测模型,建立的MLR小麦蛋白质含量检测模型最优,稳定性和精确性最高。  相似文献   

18.
高油酸油菜籽品种是当前油菜育种方向之一,为开发高效、无损测定油酸含量的方法,提高油菜高油酸种质资源筛选效率,选用3个油菜品种为材料,分别采集其种子光谱成像信息及油酸含量数据,首先对光谱信息进行11种预处理,确定多元散射校正(MSC)最佳预处理方法,然后基于主成分分析(PCA)、连续投影(SPA)、竞争性自适应重加权采样(CARS)方法对数据进行降维,最后分别建立支持向量机(SVM)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)3种定量分析模型,对油菜油酸含量进行无损检测。通过改变训练样本的数量来测试模型,为验证模型的稳定性,用相关系数(R)、均方根误差(RMSE)进行效果评价。结果表明,在所有模型中,多元散射校正+竞争性自适应重加权采样+极限学习机(MSC+CARS+ELM)模型预测效果最好,校正集相关系数(Rc)、均方根误差(RMSEc)分别为0.894、1.993 4%,预测集相关系数(Rp)为0.868,均方根误差(RMSEp)为1.069 8%,可更加准确地预测油酸含量,创建一种快速、无损检测油菜种子油酸含量的方法,为利用高光谱技术进行油菜营养品质无损检测提供理论依...  相似文献   

19.
为减轻花叶病对大豆产量的影响,实现对大豆花叶病害初期的快速检测,本文提出了一种基于卷积神经网络(convolutional neural network, CNN)模型的大豆花叶病害的诊断识别方法。首先对分别接种SC3、SC7病毒7 d后发病初期及正常的‘南农1138-2’大豆样本各80片(共计240片)进行高光谱图像采集,根据其图像信息提取并计算感兴趣区域的平均光谱值,建立基于高光谱图像的CNN模型。最终模型训练集识别率达到94.79%,预测集识别率达到92.08%,其中对接种SC3病毒的花叶病叶片识别率为88.75%,对接种SC7病毒的花叶病叶片识别率为93.13%,对正常叶片识别率为94.38%。对比最小二乘支持向量机和极限学习机模型,CNN模型能够更充分提取光谱的深层特征信息,识别效果显著提高。研究表明,基于高光谱图像的CNN模型能够更精确地实现对大豆花叶病初期检测,将CNN与高光谱结合的方法也为病害检测提供了一种新思路。  相似文献   

20.
基于高光谱成像技术的红酸枝木材种类识别   总被引:2,自引:1,他引:1       下载免费PDF全文
为了实现市场上常见红酸枝类Dalbergia spp.木材的快速无损识别,利用高光谱成像技术对不同红酸枝木材进行种类识别研究。以交趾黄檀 Dalbergia cochinchinensis,巴里黄檀 Dalbergia bariensis,奥氏黄檀Dalbergia oliveri和微凹黄檀 Dalbergia retusa为研究对象,采集高光谱图像并提取感兴趣区域内的反射光谱,采用Savitsky-Golay(SG)平滑算法、标准正态变量变换(SNV)和多元散射校正(MSC)对955~1 642 nm 波段光谱进行预处理,并通过主成分分析法(PCA),回归系数法(RC)以及连续投影法(SPA)选择特征波长,分别建立了偏最小二乘判别分析(PLS-DA)和极限学习机(ELM)判别分析模型。研究结果表明:经SG和MSC光谱预处理,采用SPA选择的特征波长建立的ELM模型性能最优,建模集和预测集的识别率均为100.0%。这为红酸枝木材种类的快速无损识别提供了新的方法。图5表4参17  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号