首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
利用31个微卫星位点对贵州全省的东方蜜蜂进行分析.结果表明:贵州省东方蜜蜂遗传分化系数(FST)为0~0.03,没有发现贵州省东方蜜蜂发生遗传分化.贵州省东方蜜蜂微卫星平均期望杂合度为0.434 5±0.055 0,平均观察杂合度为0.419 6±0.011 4,平均等位基因数为5.56±4.34,平均有效等位基因数为2.693 0±2.113 5,平均香农指数为0.873 5±0.797 1.贵州省东方蜜蜂微卫星遗传多样性高于全国东方蜜蜂的平均水平.本文研究结果对了解我国东方蜜蜂遗传结构、遗传分化和遗传多样性水平具有重要的价值,对指导贵州省东方蜜蜂遗传资源保护与利用提供理论依据.  相似文献   

2.
利用21对微卫星标记对来自于腾冲、无量山、迪庆、武定、泸水、西双版纳6个云南东方蜜蜂Apis cerana群体进行遗传多样性及遗传分化分析.通过计算多态信息含量、平均杂合度、等位基因数、遗传距离、基因流、F-统计量等参数,评估各东方蜜蜂群体遗传多样性和各群体间遗传分化.各座位的等位基因数为4(AP313)至18(AT003).除迪庆群体外,其余群体均显示较高水平的期望杂合度,其中,武定群体最高,为0.696;迪庆群体最低,为0.367.各东方蜜蜂群体间存在极显著的遗传分化,平均分化系数Fst为0.264.云南6个东方蜜蜂群体的遗传分化显著,除迪庆群体外,其余5个群体遗传多样性较高;分析遗传分化与地理距离的关系发现,云南6个东方蜜蜂群体间的遗传分化与地理距离不存在显著相关.  相似文献   

3.
长白山中华蜜蜂(Apis cerana cerana)遗传多样性分析   总被引:3,自引:2,他引:1  
长白山中华蜜蜂是我国东北地区的重要蜜蜂资源,具有独特的分布区域、生物学特性和形态特性.本研究通过A107、AP043、AP085、AP313、AT101等5对微卫星引物与mtDNA tRNAku-COII 357 bp片段,对110只长白山中华蜜蜂进行遗传多样性研究.长白山中华蜜蜂在5个微卫星位点的平均期望杂合度、平均观察杂合度、平均香农指数分别为0.2110±0.2333、0.0645±0.0718、0.4031±0.4202,PIC值除A107为0.5541外,其它4个位点分别在0-0.1644之间;mtDNA标记检测到的单倍型多样度为0.249±0.054,核苷酸多样度为0.00074±0.00017,平均核苷酸差异为0.263,表现出很低的遗传多样性.长白山中华蜜蜂的遗传结构较为单一,5个微卫星位点的遗传结构均以一种等位基因为主,线粒体单倍型H1(Japan1)占83.64%,且在长白山中华蜜蜂研究中首次发现H3(登录号:KF673779)、H5(登录号:KF673782)、H7(登录号:KF673780)、H8(登录号:KF673781)等4种单倍型.长白山中华蜜蜂种群数量少,遗传多样性低,遗传结构单一,面临着灭绝的风险.长白山中华蜜蜂的资源保护刻不容缓,需要尽快建立保护区.  相似文献   

4.
福建中华蜜蜂微卫星标记的遗传多样性分析   总被引:1,自引:0,他引:1  
为研究福建中华蜜蜂的遗传多样性及其种群的遗传分化,采用5个微卫星DNA分子标记测定了福建11个样点的607只中华蜜蜂,结果表明,永定中华蜜蜂遗传多样性最低,其次为武夷中华蜜蜂,平均杂合度分别为0.3771和0.4535.其他各样点中华蜜蜂遗传多样性水平均为中度多态,平均杂合度在0.5040 -0.5540之间.福建中华...  相似文献   

5.
东北地区狍种群的遗传变异   总被引:2,自引:0,他引:2  
应用随机扩增多态性DNA(RAPD)标记,对东北地区不同狍种群的遗传变异进行了研究。20个随机引物共检出123条带,其中114条带表现出多态性,多态率92.7%。多态条带比率(PPB)、Shannon多样性指数(I)及Nei′s基因多样性指数(h)均显示东北地区狍具有较为丰富的遗传多样性。东北地区长白山、大兴安岭和完达山3个地理种群中,大兴安岭种群遗传多样性最低。采用Nei′s遗传距离、基因分化系数(Gst)、Shannon多样性指数阶层分析和AMOVA分析各种群遗传分化,结果显示,东北地区狍种群存在一定的遗传分化,但分化程度不高,遗传变异主要来自种群内。  相似文献   

6.
对中国具代表性的东方蜜蜂遗传资源中7个种群的线粒体DNA tRNA~(leu)~COⅡ基因进行扩增和测序,并进行遗传多样性比较及亲缘关系分析。结果表明,共发现43个单倍型,其中10个单倍型在GenBank数据库对比确认属于新发现单倍型;7个群体中,阿坝中蜂、滇南中蜂和海南中蜂遗传多样性水平较高,长白山中蜂遗传多样性水平较低,其他群体遗传多样性居中;不同种群间遗传距离变化较大,其中海南中蜂与滇南中蜂、阿坝中蜂间的遗传距离最大,长白山中蜂与云贵中蜂、北方中蜂、华南中蜂间的遗传距离最小;聚类分析显示7个种群可聚为4个类群。  相似文献   

7.
吉挺  陈晶  包文斌  殷玲  陈国宏 《安徽农业科学》2007,35(32):10232-10233,10235
[目的]分析江苏省意大利蜂与中华蜜蜂品种间、品种内的遗传变异。[方法]利用6对微卫星DNA标记从DNA水平上对意大利蜂与中华蜜蜂进行遗传多样性分析,评估品种内的遗传变异和品种间的遗传分化。[结果]共检测到42个等位基因,每个位点的等位基因数从2到11不等,所有位点平均的期望杂合度和PIC值分别为0.505 0和0.473 1。意大利蜂和中华蜜蜂6个微卫星位点平均有效等位基因数分别为5.17和3.83,平均基因杂合度为0.500 7和0.333 2,群体分化系数为29.5%,两个品种间的Reynolds'遗传距离和Nm分别为0.330 5和0.638 4。[结论]两个蜜蜂品种均表现出较高的群体杂合度和丰富的遗传多样性。  相似文献   

8.
利用6对微卫星DNA标记对福建省4个中华蜜蜂群体进行遗传多样性分析,评估群体内的遗传变异和群体间的遗传分化.结果表明:共检测到50个等位基因,每个位点的等位基因数从2到19不等,所分析位点平均的期望杂合度和PIC值分别为0.6088和0.5629.4个中华蜜蜂群体6个微卫星位点平均有效等位基因数为8.333,平均基因杂合度分别为0.5608、0.4798、0.5738和0.6010,群体分化率为11.3%,4个群体间的基因流动值较大.4个中华蜜蜂群体均表现出较高的群体杂合度和丰富的遗传多样性.  相似文献   

9.
基于AFLP技术的12个蜜蜂种群遗传多样性分析   总被引:2,自引:0,他引:2  
 【目的】通过研究中国境内东方蜜蜂不同群体间及其与西方蜜蜂和大蜜蜂间的群体遗传多样性,深入了解蜜蜂种(群)间遗传变异及其分化状况,为蜜蜂种质资源的保护与合理开发利用提供理论依据。【方法】采用AFLP分子标记技术,用19对引物组合对中国10个省市的10个东方蜜蜂群体、1个大蜜蜂群体和1个西方蜜蜂群体共12个群体的基因池DNA进行分析。【结果】蜜蜂种间的遗传相似系数较低,而东方蜜蜂群体间的遗传相似系数较高。东方蜜蜂群体与意大利蜜蜂间的相似系数介于0.2335—0.2823,与大蜜蜂间的介于0.2439—0.2871;大蜜蜂与意大利蜜蜂间为0.2650。东方蜜蜂群体间为0.3639—0.6134。12个种群明显地分为3大分支,西方蜜蜂和大蜜蜂各为一个分支,东方蜜蜂群体为一大分支。东方蜜蜂群体中,吉林和江西的东方蜜蜂各为一分支;其它地区中,南部的海南、福建、广东和云南为一类群,北部的甘肃、山西、北京及南部的四川为一类群。【结论】大蜜蜂、东方蜜蜂和西方蜜蜂3个种群间遗传分化明显。东方蜜蜂群体间的遗传相似系数较高,其中,吉林东方蜜蜂可能为一个独特的生态型。  相似文献   

10.
利用23对微卫星标记,对皖南山区中华蜜蜂群体遗传多样性进行分析,评估其群体遗传结构。结果表明:23个微卫星座位中共检测到144个等位基因,等位基因数为2-13,平均等位基因数为6.26;所有位点的平均期望杂合度和平均多态信息含量分别为0.6058和0.5714,说明皖南山区中华蜜蜂群体遗传多样性较为丰富。  相似文献   

11.
利用18个微卫星标记对武夷山中华蜜蜂群体进行多态性检测,同时测定个体的前翅长、前翅宽、前翅面积、肘脉指数、吻长和第3、4背板总长等形态特征,采用方差分析法对微卫星DNA标记与形态性状进行相关性分析.结果表明,位点A088对前翅宽、前翅面积有显著影响;位点Ag005 a对第3、4背板总长有显著影响;AP043、AT101对前翅长有显著影响;AP297对吻长有显著影响(P<0.05).  相似文献   

12.
利用RAPD标记技术对采自老白山和长白山不同海拔的牛皮杜鹃进行遗传多样性分析。结果表明:产地不同(长白山和老白山)的牛皮杜鹃种群间的遗传多样性水平较高,遗传距离较大;而产地相同(长白山不同海拔)的牛皮杜鹃种群间遗传多样性水平较低,具有较小的遗传距离,即遗传背景相对相似;长白山不同海拔的4个牛皮杜鹃种群还可分为两类。  相似文献   

13.
 利用26对黄牛微卫星引物,对分别来自云南省泸水县凤凰山大额牛保种区和贡山县独龙野牛种源保护基地的2个大额牛群体进行遗传变异分析,研究其群体内的遗传变异和群体间的遗传分化。结果共检测到105个等位基因,每个座位的等位基因数从2~6不等,所有座位平均等位基因数、平均有效等位基因数、平均期望杂合度、平均多态信息含量分别为4.0385±0.9999,3.1393±0.9507,0.6490±0.1246和0.5904±0.1334,表明大额牛群遗传多样性比较丰富。F统计量、基因流、Nei氏遗传距离和遗传相似系数等值反映出两个群体遗传差异较小,遗传分化不明显,遗传一致性较大。  相似文献   

14.
4个暗纹东方鲀群体的遗传多样性分析   总被引:2,自引:0,他引:2  
采用10对暗纹东方鲀(Takifugu obscurus)和16对红鳍东方鲀(Takifugu rubripes)微卫星引物对4个暗纹东方鲀群体(1个长江常熟江段捕捞群体,1个江苏扬中放流群体和2个养殖群体)的遗传多样性进行分析。结果显示,20个微卫星位点能成功扩增出片段并且具有一定的多态性,在4个群体中共检测到113个等位基因。每个群体的平均等位基因数为4.95~5.50,平均观测杂合度为0.686 7~0.761 7,平均期望杂合度为0.653 0~0.700 0,平均多态信息含量为0.601 3~0.638 4。各个群体都有一些微卫星位点偏离Hardy-Wein-berg平衡(P<0.05),主要表现为杂合子不足。群体间遗传分化系数为0.040 6,基因流值为5.905 6,群体间遗传分化程度较小,群体间基因流水平较高。4个群体间的遗传相似系数为0.859 0~0.915 8,遗传距离为0.088 0~0.151 9,采用UPGMA法对4个群体进行聚类,可分2类:上海养殖群体单独为一类,扬中放流群体、常熟江段捕捞群体和南通养殖群体为另一类。  相似文献   

15.
目的 中国李资源丰富、分布广泛。更好地明晰不同来源中国李栽培品种的多样性、遗传结构差异以及与同域近缘种的关系,将有利于明确中国李驯化扩散历程以及近缘种在栽培驯化过程中的作用,促进中国李地方品种资源的深入挖掘和新品种的选育。方法 利用均匀分布于基因组的22对SSR分子标记,采用荧光毛细管电泳检测技术对48份种质进行基因分型,其中包括38份不同来源的中国李种质、10份变异类型或近缘种。通过GenAlEx 6.41软件评估22对SSR引物的多态性,对参试种质按不同来源分析遗传多样性;利用NTSYS-pc 2.1软件构建48份材料的树状聚类分析图;并根据贝叶斯模型的Structure 2.2软件分析不同居群间的遗传结构差异。结果 基于48份供试材料的数据,22对SSR引物等位变异范围为3—21个,平均每个位点检测到13.54个;总共检测到298个等位变异,其中有51.8%的等位变异属于稀有等位变异。在不同居群间进行比较,根据平均有效等位变异(Ne)、平均Shannon’s多样性指数(I)、观察杂合度(Ho)和期望杂合度(He)可以看出,南方品种群的多样性最高,其次为东北品种群;而杏李的多样性最低,且明显低于华北品种群。通过分子方差分析,认为中国李的多样性有69%的遗传变异来源于居群内,仅有31%的遗传变异来源于居群间。基于遗传分化系数和Nei’s遗传距离的数据比较,认为不同居群间存在显著的遗传分化,同时不同地理来源种质间存在适当的基因交流。树状聚类分析暗示国外育成品种与我国南方品种群具有较近的亲缘关系;而华北品种群与杏李关系密切;东北品种群与乌苏里李关系紧密。群体结构分析可以将栽培中国李种质资源划分为南方小果脆肉品种群、南方大果品种群(包括国外育成品种)、华北品种群和东北品种群。结论 我国南方地区中国李的多样性最为丰富,按东北品种群、国外品种群、华北品种群顺序依次降低。东北品种群为了提高适应性融入了乌苏里李基因;杏李是从华北品种群中高度驯化后的特化类型,且该类型通过无性繁殖保存了其高度杂合性状态。我国南方江浙地区的大果型种质对国外育成品种起着重要作用。  相似文献   

16.
巴什拜羊群体遗传多样性与遗传分化的研究   总被引:1,自引:0,他引:1  
利用10个微卫星标记对新疆巴什拜羊4个品系(红毛、白毛、黑毛和瘦肉型新品系)189个个体进行检测,分析群体遗传多样性和群体间的遗传分化、系统发育关系。结果表明:在巴什拜羊10个微卫星座位中共检测到110个等位基因,平均每个座位等位基因数为11个;4个群体10个微卫星标记的平均多态信息含量为0.791 4,平均杂合度为0.814 9,说明巴什拜羊4个群体均具有丰富的遗传多样性;4个绵羊群体的总近交系数为-0.178 2,群体内近交系数为-0.211 2,群体间基因分化系数为0.023 7,说明4个绵羊群体间2.37%的遗传变异来自群体间,而97.63%的遗传变异是由各群体内个体间的差异引起的;基因流(Nm)平均值为8.916 7。聚类分析发现,红毛品系与黑毛品系亲缘关系较近,之后与白毛品系相聚,最后与瘦肉型新品系聚在一起,聚类结果与品系育成史基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号