首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
重金属铅对不同品种小麦种子发芽和幼苗生长的影响   总被引:1,自引:0,他引:1  
[目的]探讨重金属铅胁迫对小麦种子发芽率和根系生长的影响。[方法]以4个小麦品种为试材,铅胁迫处理设100、150、200、300、600和1200mg/L 6种浓度营养溶液,分别处理小麦种子,观测处理后各品种的种子发芽和幼苗生长情况。[结果]在种子萌发前期,低浓度铅对种子萌发有促进作用,但在种子萌发后期,所有浓度铅均对种子萌发产生抑制作用。不同品种对铅胁迫的耐受能力有所不同。从第7天的发芽率看出,普冰S-30、石4185和京411对铅胁迫的耐受能力优于科农199。铅胁迫对小麦根伸长和茎伸长均有抑制作用,且对根部的抑制作用强于对茎的伸长。当铅浓度达到300mg/L时,小麦根系生长受到严重胁迫。[结论]铅对小麦种子具有毒害作用,且不同品种种子对铅胁迫的耐受能力不同。  相似文献   

2.
铅胁迫对小麦生长发育的影响   总被引:2,自引:1,他引:1  
杨生龙  康建宏  吴宏亮 《安徽农业科学》2010,38(36):20576-20578
[目的]探讨铅胁迫对小麦生长发育的影响。[方法]采用盆栽试验,研究了不同浓度的铅胁迫对2个小麦品种(宁春13号和宁春4号)生长发育的影响。[结果]随外源铅浓度的增加,2个小麦品种的株高均呈下降趋势;在低浓度铅(小于200 mg/kg)处理下,2个小麦品种的鲜、干重均随铅浓度的增加而呈增加趋势,而当铅浓度超过200 mg/kg时整体上均呈下降趋势;在相同施肥水平条件下,受铅胁迫的2个小麦品种根冠比均小于不施铅水平,且在铅胁迫条件下宁春13号的抗逆性略优于宁春4号;在铅胁迫环境下,较高浓度(200~800 mg/kg)的铅胁迫使2个小麦品种的生理生化活性严重受阻,从而影响了对氮、磷和钾的积累。[结论]为对受铅污染的农田采取合理的栽培调控措施提供了理论依据。  相似文献   

3.
铅胁迫对小麦生长发育的影响   总被引:3,自引:0,他引:3  
[目的]探讨铅胁迫对小麦生长发育的影响。[方法]采用盆栽试验,研究了不同浓度的铅胁迫对2个小麦品种(宁春13号和宁春4号)生长发育的影响。[结果]随外源铅浓度的增加,2个小麦品种的株高均呈下降趋势;在低浓度铅(小于200mg/kg)处理下,2个小麦品种的鲜、干重随铅浓度的增加均呈增加趋势,而当铅浓度超过200mg/kg时整体上均呈下降趋势;在相同施肥水平条件下,受铅胁迫的2个小麦品种根冠比均小于不施铅水平,且在铅胁迫条件下宁春13号的抗逆性略优于宁春4号;在铅胁迫环境下,较高浓度(200~800mg/kg)的铅胁迫使2个小麦品种的生理生化活性严重受阻,从而影响了对氮、磷和钾的积累。[结论]为对受铅污染的农田采取合理的栽培调控措施提供了理论依据。  相似文献   

4.
安徽省主栽小麦品种对赤霉病的抗性水平分析   总被引:1,自引:0,他引:1  
[目的]明确安徽省2011年主栽小麦品种对赤霉病的抗性水平。[方法]采用田间人工接种鉴定的方法,分析了江淮地区35个小麦主栽品种对赤霉病的抗性。[结果]主栽的35个小麦品种中,没有免疫和高抗性品种,中抗品种占11.4%,中感病品种占54.3%,感和高感品种占34.3%。[结论]应加强小麦抗赤霉病育种工作,提高小麦的整体抗性水平。  相似文献   

5.
在前一研究结果的基础上,选用8个对UV-B辐射耐受性不同的小麦品种(4个耐性品种和4个敏感品种),进一步对其进行RAPD分析。结果表明,8个小麦品种间存在着明显的遗传多态性。聚类分析显示,在遗传距离为0.35的水平上,可将它们明显区分出耐性和敏感两大类,这与其生长响应指数(RI)的判定结果基本一致。4个耐性品种共同具有1500bp(OPA-12)的特征谱带,这一分子标记可能与小麦耐UV-B辐射相关,有待进一步研究。  相似文献   

6.
刘自成  杨虓  骆丹 《安徽农业科学》2012,(31):15174-15176
[目的]分析评价庆阳市小麦(Triticum aestivum Linn)品种(系)的品质,确保庆阳市冬小麦快速健康发展.[方法]对陇东学院旱作小麦育种课题组新选育的10个陇育号小麦品种(系)的理化性质及面团流变学特性进行鉴定.[结果]大部分品种(系)品质属于硬质;容重出粉率中上,灰分含量较低,湿面筋含量较高,吸水率高,沉降值相对较低,粗蛋白含量较低.面团流变学特性显示,绝大部分品种仅适合于加工馒头、面条等传统面食.针对陇育号小麦品质现状、资源优势及区域特性,提出今后在优质冬小麦育种中可通过转基因技术导入优质基因,有目标地改良这些品种为高筋和低筋优质专用品种;优质馒头和面条小麦品种应尽快建立专用生产基地,以大面积生产优质、绿色、专用馒头面条小麦品种,并实现产品加工外销,创造更大的经济效益.[结论]该研究可为小麦品质改良及农业生产和食品加工企业的原料选择提供理论依据及指明正确方向.  相似文献   

7.
[目的]对新疆14个黑小麦品种资源的8个主要农艺性状进行了相关性分析和主成分分析,为选择具有优良性状的黑小麦品种提供依据。[方法]通过一年多点试验,记载黑小麦主要农艺性状,用以评价黑小麦的综合性指标。[结果]在单株粒重性状上变异丰富,株高、千粒重和结实小穗数等性状在供试材料中差异不大;典型相关分析中有5对性状达极显著相关;累积方差贡献率达到89.60%。[结论]根据各品种主成分并对其进行综合评价,选择综合经性状优良的品种(系)2个。  相似文献   

8.
[目的]探究小麦种子萌发期间对盐胁迫的耐受性以及响应方式。[方法]采用5种浓度的Na Cl溶液处理萌发期的2种春小麦种子,研究盐胁迫对小麦种子的萌发以及萌发期间过氧化物酶类活性的影响。[结果]盐胁迫对小麦种子的萌发有抑制作用,低盐浓度对种子的萌发率影响不明显,但对发芽势影响显著;小麦种子萌发期间的过氧化物酶类活性明显受到盐胁迫的抑制。各指标显示,相同浓度盐胁迫条件下,陇春30号小麦种子的萌发效果略好于陇春27号。[结论]为筛选小麦的耐盐品种以及种子的选育工作提供了依据。  相似文献   

9.
[目的]研究皖北地区小麦品种的加工品质性状,为小麦品质改良提供好的种质资源和理论依据。[方法]选取了皖北地区65个小麦栽培品种(系),对这些小麦品种的籽粒品质性状包括蛋白质含量、沉降值、湿面筋含量和千粒重以及面团品质性状进行测定,利用方差分析和相关性分析比较各品质性状在不同品种间的差异,以及各性状之间的相关性。[结果]在小麦加工品质性状方面,各品种之间存在较大的变异范围;相关性分析表明,籽粒蛋白质含量、湿面筋含量和沉降值均与面团品质性状的4个指标(除了峰值高度)呈显著或极显著地正相关,而千粒重与面团品质性状的4个指标呈负相关(除了峰值高度)。[结论]在小麦育种早代,可以通过提高蛋白质含量和沉降值改良小麦品质。  相似文献   

10.
11.
【目的】小麦籽粒超氧化物歧化酶活性对小麦面粉色泽和营养品质具有重要影响,挖掘与小麦籽粒超氧化物歧化酶(superoxide dismutase,SOD)活性显著关联位点及候选基因,为揭示小麦籽粒SOD活性的遗传机理和小麦面粉色泽的遗传改良奠定基础。【方法】采用氮蓝四唑(nitro-blue tetrazolium,NBT)光化还原法对3个环境下种植的212份普通小麦品种(系)进行SOD活性检测,结合90K SNP芯片的16 705个高质量SNP标记对小麦籽粒SOD活性进行全基因组关联分析(genome-wide association study,GWAS),并对稳定遗传的显著关联位点进行候选基因的挖掘。【结果】不同环境下,各小麦品种(系)间的SOD活性表现出丰富的表型变异,变异系数为4.34%—5.23%,相关系数介于0.60—0.90(P<0.001)。多态性信息含量(polymorphic information content,PIC)为0.24—0.29。全基因组连锁不平衡(linkage disequilibrium,LD)衰减距离为7 Mb。群体结构分析表明,供试材料可分为3个亚群。GWAS分析结果显示,共检测到29个与SOD活性显著关联位点(P≤0.001),分布在1A、1B、2A、2B、2D、3B、3D、4B、4D、5A、5B、5D、6A、6B、6D和7B染色体上,单个位点可解释5.47%—32.43%的表型变异,其中14个位点在2个及以上环境下均被检测到。9个显著关联位点在3个环境下被同时检测到,分布于1B、2B、4B、5A、5B、6B和6D染色体,贡献率为6.21%—16.62%。对稳定遗传的显著关联位点进行候选基因的挖掘,共挖掘TraesCS2B01G567600TraesCS3D01G069900TraesCS3D01G070200TraesCS5B01G525700TraesCS5B01G373700TraesCS6A01G021400TraesCS6D01G431500等7个SOD基因和TraesCS5A01G263500TraesCS6B01G707800等2个与SOD活性相关的候选基因,候选基因的功能主要与抑制细胞活性氧积累及参与抗氧化剂再生过程有关。【结论】检测到与小麦籽粒SOD活性显著关联的29个SNP位点,共筛选出7个SOD基因和2个与SOD活性有关的候选基因。  相似文献   

12.
【目的】小麦条锈病是小麦的主要病害之一,每年都会对小麦产量安全造成严重危害,挖掘小麦抗条锈病基因,为小麦抗条锈病种质创新和揭示小麦抗条锈病遗传机制奠定基础。【方法】利用多组学手段结合全基因关联分析(GWAS)开展对小麦成株期抗条锈病性状的解析。首先对411份来自CIMMYT和ICARDA的春小麦进行全基因组关联分析,在小麦2BL染色体上定位到一个主效的成株期抗条锈病位点,并利用含有该位点的抗病材料Z501及感病亲本晋麦79的双亲群体进行连锁作图,成功验证了该位点抗性的稳定性,暂命名为YrZ501-2BL。在此基础上,通过基因注释、比较基因组分析、转录组分析和候选基因的关联分析对目标区间筛选候选基因。【结果】综合GWAS和连锁作图结果,将YrZ501-2BL锁定在小麦2B染色体0.26 Mb(575.706—576.587 Mb)范围内,根据中国春参考基因组注释信息分析,该区间含有12个基因,其中,高可信基因6个;利用在线网站,将目标区间所在的中国春参考基因组与其他已公布的不同倍性小麦基因组进行比较,发现该区间的6个高可信小麦基因基本都能在其他小麦材料中找到同源基因,且基因排列顺序相同,...  相似文献   

13.
【目的】植物根系对水分及营养的获取、作物的生长发育和产量的形成至关重要。挖掘小麦苗期根系性状显著关联的SNP位点,预测相关候选基因,为解析小麦根系建成遗传机制及选育具有优良根系构型的小麦品种奠定基础。【方法】以189份小麦品种组成的自然群体为供试材料,调查2种培养条件(霍格兰营养液和去离子水)下培育21 d的苗期根系总长度(TRL)、根系总表面积(TRA)、根系总体积(TRV)、根系平均直径(ARD)及根系干重(RDW)等5个根系性状,试验进行2次重复,同时结合小麦660K SNP芯片的分型结果进行全基因组关联分析(genome-wide association study,GWAS)。此外,通过序列比对、结构域分析和注释信息预测候选基因,并采用竞争性等位基因特异性PCR(kompetitive allele specific PCR,KASP)技术开发根系性状的分子标记。【结果】霍格兰营养液培养条件下的根系性状变异范围较大,根系整体粗短;而去离子水条件下的根系细长、侧根较多。选用贝叶斯信息与连锁不平衡迭代嵌套式模型(BLINK)、压缩式混合线性模型(CMLM)、固定随机循环概率模型(...  相似文献   

14.
【目的】挖掘小麦籽粒品质性状显著相关的SNP位点及候选基因,并揭示其遗传机理,为相关基因克隆和分子标记辅助选择提供理论依据。【方法】通过检测298份国内外春小麦品种(系)5个环境下蛋白质含量、湿面筋含量、沉降值、淀粉含量、籽粒硬度、出粉率和容重等7个籽粒品质性状的表型,并结合小麦55K SNP芯片,采用Q+K关联混合模型进行全基因组关联分析(genome-wide association study,GWAS)。【结果】外引品种(系)、地方品种(系)和育成品种(系)的7个品质性状在不同环境下的变异系数分别为1.3%—13.4%、1.1%—18.6%和1.0%—13.9%。其中,外引品种(系)的蛋白质含量、湿面筋含量和沉降值的变异系数均为最高;新疆自育品种的淀粉含量、籽粒硬度和出粉率的变异系数最大,而新疆地方品种的蛋白质含量、湿面筋含量、沉降值、淀粉含量、籽粒硬度和出粉率6个品质性状的变异系数均介于外引品种(系)和新疆自育品种(系)之间。群体结构分析表明,298份小麦品种(系)可分为3个亚群。其中,亚群1包含128份(43.0%)试验材料,主要是来自新疆的地方品种(系);亚群2包含24份(8.1%)试验材料,主要包括外引品种(系)和新疆地方品种;亚群3包含146份(48.9%)试验材料,主要是外引品种(系)。连锁不平衡分析表明A、B和D基因组及全基因组的LD衰减距离分别为10、10、6和8 Mb,依据全基因组的LD衰减距离,将在物理图谱上前后8 Mb区间内的位点认定为一个候选位点。通过GWAS共检测到85个与7个小麦籽粒品质性状显著关联的稳定位点(P<0.001)贡献率为3.7%—10.9%。在1B、1D、2D、3A、3D、4A、4B、5A、6A、6D、7A和7D染色体上均检测到稳定且同时与多个性状关联的位点。其中,7A染色体上的AX-109452823—AX-110545157同时与蛋白质含量、淀粉含量、湿面筋含量、沉降值、出粉率和籽粒硬度相关,且同时在4个环境中均被检测到。对稳定的位点进行候选基因发掘,筛选到10个可能与小麦籽粒品质相关的候选基因。其中TraesCS4A01G299800(阳离子氨基酸转运蛋白)、TraesCS7A01G059500(色氨酸脱羧酶)、TraesCS7A01G331200TraesCS7D01G418700(木葡聚糖内转葡糖基酶/水解酶)对调控小麦籽粒氨基酸含量有重要作用。【结论】检测到85个稳定的且与小麦籽粒品质性状关联的位点,并筛选出10个与小麦籽粒品质性状相关的候选基因。  相似文献   

15.
【背景】苹果(Malus×domestica Borkh)是我国主要栽培果树树种之一,但部分苹果产区由于夏、秋季的大量集中降雨和排水不良等造成果园涝害频繁发生,导致苹果树叶片黄化、脱落,果实品质和产量下降。【目的】鉴定苹果耐涝相关基因,为苹果耐涝分子标记辅助育种和优质高产栽培提供依据。【方法】以耐涝苹果砧木G41和不耐涝苹果砧木新疆野苹果(M. sieverii (Ledeb) Roem.)及其构建的包含495个F1杂交后代为材料,从F1杂交群体中挑选出耐涝和不耐涝株系各50株,构建两个极端性状DNA混池,采用简化基因组测序(SLAF-seq)技术,开发SLAF标签和SNP标记,结合苹果基因组信息和遗传关联性分析,对苹果耐涝基因进行定位及候选基因预测,并对候选基因在耐涝差异的株系中进行淹水胁迫下的表达分析。【结果】以‘金冠’苹果为参考基因组,共开发119 072个SLAF标签,其中多态性SLAF有11 133个。通过序列分析和检测SNP位点,共获得6 237 071个SNP,其中高质量SNP有170 617个。通过ED和SNP-index方法关联分析,获得一个与耐涝性状紧密关联的候选区域,位于苹果第10号染色体1.94—3.25 Mb,关联区域大小为1.31 Mb,关联区域内包含120个基因。对该区域内基因进行功能注释,发现一个与呼吸代谢相关的基因—乙醇脱氢酶基因ADH1(MD10G1014500),在淹水处理后1、2、4和6 d,该基因在耐涝植株中的表达量显著高于不耐涝植株。【结论】将苹果耐涝基因定位于第10号染色体1.94—3.25 Mb处,筛选到可能与苹果耐涝相关的候选基因MD10G1014500,可用于苹果耐涝基因的克隆和功能解析。  相似文献   

16.
【目的】通过分析陕A群和陕B群选育自交系组配的杂交种产量,评估自交系的配合力,并开展以产量和配合力为目标性状的全基因组关联分析,挖掘产量及其配合力的关联位点,为陕A群和陕B群选育玉米自交系的改良及育种中的应用提供依据。【方法】基于NCⅡ遗传设计,以陕A群和陕B群选育的85份优良玉米自交系为亲本,构建包含246份F1的杂交种群体,在3个环境下进行产量测试,并评估产量的一般配合力和特殊配合力;利用6H90K芯片进行亲本基因型检测,获得63 879个高质量SNP标记,并进行群体遗传特征分析,在杂交种群体推测出高质量SNP标记55 951个,采用加性模型和非加性模型对杂交种产量、一般配合力和特殊配合力开展了全基因组关联分析,并基于B73参考基因组对显著关联SNPs内的基因进行挖掘和功能注释。【结果】3个环境下的产量表现符合正态分布且变异广泛,产量广义遗传力为59.04%,环境效应显著;杂交种产量、一般配合力和特殊配合力三者之间均达到极显著相关性,杂交种产量与特殊配合力的相关性(r=0.95)大于与一般配合力的相关性(r=0.62);陕A群与陕B群遗传特征具有一定差异,陕A群具有较高的一般配合力。全基因组关联分析分别检测到7、5和9个SNP与杂交种产量、一般配合力和特殊配合力显著相关(-log10(P)>3.86),其中4个SNP为杂交种产量和特殊配合力共定位,最终锚定了17个关联SNP。对不同性状关联位点的优势等位基因型分析发现,4个GCA关联SNP受加性效应控制,F1产量BLUE关联位点可分为4种表现形式,以显性效应为主,其杂合基因型为最优等位基因型或次优等位基因型。通过功能注释发现,候选基因在玉米生长发育和籽粒建成中特异表达,例如GRMZM2G165828GRMZM2G057557均与玉米籽粒发育相关。【结论】一般配合力和特殊配合力共同影响杂交种的产量,特殊配合力效应影响更大;一般配合力和特殊配合力具有不同的遗传基础,可通过有利等位基因聚集提高一般配合力。在F1杂交种群体采用全基因组关联分析策略可开展配合力相关遗传解析,挖掘产量及其配合力相关遗传位点,可加速关联位点在分子育种中的应用。  相似文献   

17.
【目的】水稻是重要的粮食作物,芽期是水稻生长发育过程中最脆弱的时期,直播稻遭遇冷害时发芽率大幅降低,减产严重。深入了解耐冷性的遗传机制,为培育芽期强耐受性水稻品种奠定基础。【方法】以世界范围内14个国家代表性的238份水稻种质资源为试验材料,于2021和2022年在沈阳开展表型鉴定试验,统计不同水稻品种在人工气候培养箱15℃低温条件下第1—10天的发芽率和相对发芽率,利用R语言绘制5—10 d的频率直方图,通过表型丰富度Hill值选择宜作关联分析的天数,将发芽率和相对发芽率表型数据与重测序数据相结合,进行基于混合线性模型MLM(QK)的全基因组关联分析,并对所获得的SNP位点进行耐冷候选基因的预测。【结果】发芽率频数分布直方图和表型丰富度计算结果显示第8天发芽率多态性最好,其Hill值为0.84,高于其他几天发芽率(0.48—0.83),可用于全基因组关联分析;主成分分析结果显示,这些水稻品种可以分为indicaaustemperate japonicatropical japonicaaromatic 5个亚群;2个指标进行的GWAS分析检测到3个相同的显著性SNP位点,均位于第4染色体,解释表型的11.9%—25.4%;在上下游各50 kb进行基因搜索,共发现24个相关候选基因,进一步开展LD和单倍型分析,发现LOC_Os04g24840LOC_Os04g25140的不同单倍型耐冷性之间存在极显著差异。LOC_Os04g24840被编码区SNP分为5个单倍型,且Hap_3的耐冷性显著强于Hap_1;LOC_Os04g25140被编码区SNP分为18个单倍型,且77 bp处的氨基酸变异(S>L)存在籼粳差异。结果表明,编码糖基转移酶的基因LOC_Os04g24840和编码F-box蛋白基因LOC_Os04g25140可能与水稻芽期耐冷性密切相关。【结论】在238份水稻种质资源中共检测到3个与芽期耐冷性显著关联的SNP位点,筛选出2个与水稻芽期耐冷性相关的候选基因。  相似文献   

18.
目的 对产羔数不同的山羊进行全基因组重测序分析,挖掘参与调控川中黑山羊产羔数性状关键调控基因,为解析山羊产羔数性状遗传机制及分子遗传改良提供理论依据。方法 选择6只产4—6羔的川中黑山羊为高繁组(high fecundity, HF)和6只产单羔的川中黑山羊为低繁组(low fecundity, LF),采集颈静脉血液样本提取基因组DNA,构建350 bp双末端测序文库,利用Illumina HiSeq PE150平台对12个文库进行全基因组重测序。测序产出的净数据经BWA软件比对至山羊参考基因组ARS1,所获得的高质量SNPs通过两种全基因组扫描分析方法(FstHp)的综合分析确定候选区域,候选区域的注释基因分别利用g:Profiler和KOBAS在线数据库进行GO分析与KEGG通路分析,以筛选调节川中黑山羊产羔数性状候选基因。为了进一步鉴定调节山羊产羔数目的关键遗传标记,根据基因组重测序变异分析,对繁殖候选基因的同义与非同义SNPs进行定位筛选,后续将12个山羊样本的扩增产物进行Sanger测序以验证重测序结果。结果 12只山羊共获得431.50 Gb 净数据,经变异检测与注释发现,HF组山羊共发现7 771 417个单核苷酸多态性(single nucleotide polymorphism, SNPs),LF组山羊检测到8 935 907个SNPs,且LF组各类SNPs 均多于HF组。设置同时达到top 5%最大ZFst值和top 5%最小ZHp值的窗口为候选区域,在低杂合性、高遗传分化的区域共注释130个强选择信号,其中HF组、LF组以及共享窗口的注释基因分别为84、59和13个,经GO富集与KEGG通路分析发现,19个候选基因参与川中黑山羊的繁殖、繁殖过程和胚胎发育等调控,包括11个HF组特异性候选基因(ADCY10、DRD1、HS6ST1、IGFBP7、MSX2、NOG、NPHP4、PAPPA、PRLHR、TDRPXYLT1),5个LF组特异性候选基因(ANXA5IGF1EDNRAFANCLTAC1)和3个HF组与LF组共享窗口基因(AKR1B3HDAC4OPRM1)。同时,大多数GO分析,如G蛋白偶联受体活性、激素反应和神经肽信号通路等,都包含这19个候选基因。此外,14个HF候选基因有9个显著富集在代谢途径、神经活性配体-受体相互作用、糖胺聚糖-硫酸乙酰肝素/肝素的生物合成、钙离子信号通路、cAMP信号通路和叶酸生物合成等KEGG通路中(P<0.05)。19个繁殖候选基因中共有2个同义突变(MSX2 G771T,ADCY10 A4662G)与2个非同义突变(PRLHR G529A,DRD1 A281T),且仅定位于HF候选基因中。Sanger测序发现,MSX2PRLHRDRD1突变位点均可检测到多态性,与基因组重测序结果一致,其中PRLHR G529A多态性导致第177位丙氨酸突变为苏氨酸,DRD1 A281T多态性导致翻译提前终止。结论 本研究共发现11个HF组特异性候选基因,推测是川中黑山羊多羔性状的关键调控基因,PRLHR外显子G529A与DRD1外显子A281T突变可能是调控山羊多羔性状的关键遗传标记,在改良山羊繁殖性能方面具有较大的应用价值。  相似文献   

19.
【目的】 研究新疆小麦品种(系)过氧化物酶活性高低并分析相关基因变异类型和分布,为新疆小麦育种和品质的遗传改良奠定基础。【方法】 分别利用TaPod-A1TaPod-D1基因位点的显性互补功能标记TaPod-3A1/TaPod-3A2和TaPod-7D1/TaPod-7D6对113份新疆小麦品种(系)进行分子标记检测,结合新疆小麦材料POD活性的测定结果,分析POD活性相关基因不同等位变异对小麦籽粒POD活性的影响,验证TaPod-A1TaPod-D1基因位点功能标记有效性的同时,对新疆小麦材料POD相关基因的等位变异分布频率进行分析。【结果】 新疆小麦品种(系)中,在TaPod-A1位点,具有TaPod-A1b基因型的小麦品种(系)POD活性(2 595.3 U/(g·min))极显著(P<0.01)高于具有TaPod-A1a基因型的材料(2 346.0 U/(g·min)),2种基因型的分布频率分别为36.3%和63.7%;在TaPod-D1位点,具有TaPod-D1b基因型的小麦品种(系)POD活性(2 503.9 U/(g·min))显著(P<0.05)高于具有TaPod-D1a基因型的材料(2 376.9 U/(g·min)),2种基因型的分布频率分别为46.9%和53.1%。在113份新疆小麦材料中,共检测到TaPod-A1a/TaPod-D1aTaPod-A1a/TaPod-D1bTaPod-A1b/TaPod-D1aTaPod-A1b/TaPod-D1b 4种变异组合类型,在新疆小麦中的分布频率分别为31.9%、31.9%、21.2%和15.0%。TaPod-A1b/TaPod-D1b(2 706.2 U/(g·min))类型的POD活性显著(P<0.05)高于TaPod-A1a/TaPod-D1a(2 283.6 U/(g·min))。【结论】 新疆小麦品种(系)以TaPod-A1a(低POD活性)和TaPod-D1a(低POD活性)等位变异类型为主;TaPod-A1TaPod-D1的功能标记均能较好的区分小麦籽粒POD活性的高低,将2个位点特异性标记结合起来使用,有效地筛选出高POD活性的材料,提高新疆小麦品种(系)优异等位变异的频率,促进新疆小麦品质的遗传改良。  相似文献   

20.
【目的】通过对水稻籽粒大小相关性状进行QTL定位及候选基因的筛选,为水稻籽粒大小相关基因的精细定位、克隆及基因功能等研究奠定基础。【方法】以籼稻品种特华占搭载高空气球空间诱变后产生的特异矮秆突变体CHA-1为母本,以籼稻品种航恢7号搭载“神州八号”飞船经空间诱变后筛选出的突变体H335为父本杂交衍生出的275个RIL群体作为供试材料,利用GBS测序技术构建高密度遗传图谱,RIL群体及亲本分别于2017年早季和2017年晚季在华南农业大学实验教学基地种植。成熟收获后通过扫描仪获取水稻籽粒图像,利用SmartGrain软件获取籽粒大小相关性状表型数据。采用QTL IciMapping v 4.0软件基于完备复合区间作图法,对水稻籽粒大小相关性状进行QTL定位。【结果】构建的高密度遗传图谱包含2 498个Bin标记,总图距2 371.84 cM,标记间平均遗传图距为0.95 cM。两季共检测到26个籽粒大小相关QTL,分布于第1、2、3、4、7和9染色体上,单一QTL贡献率为0.16%—14.41%。在第1、2、3、7染色体上检测到5个QTL簇(qGS1qGS2qGS3-1qGS3-2qGS7)。其中qGS1qGS3-2qGS7与前人报道相似,qGS2qGS3-1是新发现的籽粒大小相关QTL,qGS2在2个季别的不同性状中被检测在同一标记区间附近,LOD值介于4.00—8.08,贡献率为6.67%—11.38%。qGS3-1在2个季别下均检测到与籽粒厚度相关,LOD值介于2.94—8.59,贡献率为4.69%—14.41%。使用的高密度遗传图谱定位区间较小,结合功能注释和CREP数据库表达谱,在qGS2位点筛选到4个潜在的与籽粒大小相关的注释基因LOC_Os02g42310LOC_Os02g42314LOC_Os02g42370LOC_Os02g42380。其中LOC_Os02g42310编码一个丝氨酸羧肽酶;LOC_Os02g42314编码一个泛素E2结合酶;LOC_Os02g42370编码一个类受体蛋白激酶;LOC_Os02g42380编码一个TCP转录因子。在qGS3-1位点筛选到3个潜在的与籽粒大小相关的注释基因LOC_Os03g39020LOC_Os03g39150LOC_Os03g39230。其中LOC_Os03g39020编码一个驱动蛋白结构域;LOC_Os03g39150编码一个蛋白激酶结构域;LOC_Os03g39230编码一个具有去蛋白质泛素化功能的OTU-like半胱氨酸肽酶。其中编码泛素E2结合酶的LOC_Os02g42314和编码驱动蛋白结构域的LOC_Os03g39020在幼穗和授粉后的胚乳中表达量较高,推测其为最可能的调控籽粒大小的候选基因。【结论】共检测到26个水稻籽粒大小相关QTL。在第1、2、3和7染色体上检测到5个QTL簇(qGS1qGS2qGS3-1qGS3-2qGS7),其中qGS2qGS3-1为新发现的控制籽粒大小QTL,并在该位点筛选到2个可能调控水稻籽粒大小相关的候选基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号