首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同热处理方式对小麦抗性淀粉形成的影响   总被引:3,自引:0,他引:3  
以小麦淀粉为原料,利用压热法、酶法、酸法及其复合处理等方式制备小麦抗性淀粉.在对压热条件、α-淀粉酶和普鲁兰酶酶解条件、酸法条件优化的基础上,采用压热-酶法、微波-酶法复合处理制备小麦抗性淀粉.研究结果表明微波-酶法所制得的小麦抗性淀粉得率最高,其优化条件是:25%的淀粉乳在800 W微波条件下糊化2 min,α-淀粉酶量为2 U/g,酶解时间为20 min,酶解温度为85 ℃;普鲁兰酶量为4 U/g,酶解温度为55 ℃,酶解时间为3 h,然后4 ℃老化24 h,80 ℃干燥16 h,抗性淀粉的得率为17.36%.  相似文献   

2.
抗性淀粉具有类似膳食纤维的作用,具有重要的生理功能和优良的食品加工性能.为了增加淮山产品的利用价值,通过单因素试验和均匀试验,利用微波-双酶解的方法来研究制备淮山抗性淀粉的工艺,得到其最佳制备工艺参数为:淮山淀粉乳浓度为15%,先用144W微波处理120s后,按6U/g干淀粉加入耐高温淀粉酶酶解75min,再按2U/g干淀粉加入普鲁兰酶酶解3h;酶解液经离心、老化、烘干、粉碎、过筛后即得淮山抗性淀粉样品,其中抗性淀粉得率为14.32%.研究结果可为淮山抗性淀粉的生产提供科学依据.  相似文献   

3.
酶解法制备玉米抗性淀粉的研究   总被引:1,自引:0,他引:1  
以普通玉米淀粉为原料,采用酶解回生的方法制备抗性淀粉(Resistant Starch,RS)。以淀粉乳浓度、普鲁兰酶添加量、α-淀粉酶添加量、回生时间为单因素,确定其对抗性淀粉得率的影响,通过正交试验,确定最佳的制备条件。试验结果表明:在影响RS生成的4个因素中普鲁兰酶添加量、淀粉乳浓度影响较大,α-淀粉酶添加量、回生时间影响较小,淀粉乳浓度25%,普鲁兰酶添加量3.6U·g^-1淀粉,α-淀粉酶添加量4U·g^-1淀粉,回生时间为24h是制备抗性淀粉的最佳条件,得率在9.027%。  相似文献   

4.
以马铃薯淀粉为原料、耐高温α-淀粉酶为液化酶,依据DE值和透光率为衡量指标,采用单因素对比分析与Box-Behnken设计相结合的试验方法,研究马铃薯淀粉制备高麦芽糖浆酶法液化工艺的最佳条件.结果表明:在液化温度96℃、液化时间15.55min、耐高温α-淀粉酶添加量15.13U/g淀粉、淀粉乳质量分数21.4%、pH值为6.2以及无水CaCl2添加量为0.10%的条件下,马铃薯淀粉液化液的理论预测DE值为9.99%,可以制备DE值最接近于10的液化酶解产物.  相似文献   

5.
[目的]探讨超声波辅助淀粉酶和糖化酶酶解玉米淀粉的工艺条件,为提高糖收率,降低生产成本,提高企业经济效益提供参考.[方法]采用超声波辅助淀粉酶和糖化酶酶解玉米淀粉,以DE值为测定指标,液化过程选取淀粉质量浓度、加酶量、超声功率、液化反应时间4个影响因素,进行正交试验,确定最佳液化酶解工艺条件;糖化过程选取加酶量、超声功率、糖化反应时间3个影响因素,进行正交试验,确定最佳糖化酶解工艺条件.[结果]最佳液化工艺条件为:淀粉质量浓度0.3 g/ml、加酶量20 U/g淀粉,超声功率100 W,反应时间1h;最佳糖化工艺条件为:加酶量50 U/g淀粉,超声功率100 W,糖化反应时间60h.[结论]研究得到了超声波辅助淀粉酶和糖化酶酶解玉米淀粉的最佳工艺条件,在此工艺条件下,DE值达到107%以上,能够提高糖收率,节约生产成本,有助于企业经济效益的提高.  相似文献   

6.
以江南花糯鲜食玉米为试材,研究了在玉米浆液制取过程中酶处理对其品质的影响。结果表明:按中温α-淀粉酶、中性蛋白酶的添加顺序处理获得的酶解效果最好。最佳酶解作用条件为:中温α-淀粉酶8 U/g,65℃处理30 min;中性蛋白酶80 U/g,45℃处理40 min,该条件下糯玉米浆液品质得到明显改善。  相似文献   

7.
以青稞淀粉为原料,分别以普鲁兰酶法、α-淀粉酶法、β-淀粉酶法制备慢消化淀粉(Slow digestion of starch,SDS),并优化SDS的制备条件。通过正交实验确定制备SDS的最佳方案为普鲁兰酶法,制备得到的SDS含量为32.72%。普鲁兰酶法处理条件为:普鲁兰酶的添加量200 U,酶解时间10 h,冷藏回生时间1 d,淀粉浓度15%。  相似文献   

8.
荞麦淀粉酶水解工艺条件研究   总被引:8,自引:0,他引:8  
为探索荞麦淀粉酶水解特性及工艺条件,试验采用中温α-淀粉酶、真菌α-淀粉酶及其不同组合对荞麦淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行了二次回归正交旋转试验,确定了荞麦淀粉酶解工艺条件。结果表明,真菌α-淀粉酶适用于荞麦淀粉水解,其淀粉转化率和DE值均较高;各因素对真菌α-淀粉酶水解荞麦淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;真菌α-淀粉酶水解荞麦淀粉的适宜工艺条件为:水解温度54℃,pH 6.0,底物浓度50 g/L,酶用量100~130 U/g,水解时间为75 m in,在此工艺条件下荞麦淀粉酶水解度为66.05%。  相似文献   

9.
张海波  陈正行 《安徽农业科学》2007,35(29):9116-9118
利用酶解法去除麦麸中的淀粉和蛋白质,对影响反应的工艺参数:酶解时间、温度、固液比及加酶量进行了研究,确定了最佳工艺条件。结果表明,耐高温α-淀粉酶的最佳作用条件为固液比1:12,水解温度100℃,加酶量3ml,酶解时间20~30 min;碱性蛋白酶的最佳作用条件为固液比1:12,水解温度50℃,加酶量0.3g,酶解时间120min;酶解后木聚糖的质量分数增加了30%左右。  相似文献   

10.
黄姜淀粉双酶法糖化工艺条件的研究   总被引:1,自引:0,他引:1  
为探讨黄姜淀粉双酶法糖化的工艺条件,采用单因素和正交试验别确定黄姜淀粉液化、糖化的工艺条件.结果显示对于粗淀粉浓度为22.5%的黄姜粉浆,液化的优化工艺条件为:pH 7.0,温度95 ℃,α-淀粉酶用量12 U/g干淀粉;糖化的优化工艺条件为:pH 5.0,温度55 ℃,糖化酶投加量180 U/g干淀粉,酒精酶投加量0.05% (mL/mL),糖化48 h.在优化工艺条件下,可使黄姜粗淀粉的转化率达到96.02%,葡萄糖收率达到106.58%,糖化液中还原糖含量达23.98%.  相似文献   

11.
酶法去除燕麦麸皮淀粉工艺研究   总被引:1,自引:0,他引:1  
用α-淀粉酶酶解燕麦麸皮中的淀粉,以酶解后燕麦麸皮中淀粉的残留量为考察指标,研究了酶解反应过程中加水量、加酶量、反应时间及反应温度4个因素对酶解效果的影响.结果表明,α-淀粉酶酶解麸皮燕麦中淀粉的最佳工艺条件为:料水比1∶5,加酶量200 U,反应时间40 min,反应温度65℃.酶解后燕麦麸皮淀粉含量由243.15 mg/g降至3.73 mg/g以下,去除淀粉的效果明显.  相似文献   

12.
利用α-淀粉酶、γ-淀粉酶水解淀粉,探讨了麦麸中淀粉水解工艺条件。以料液比、α-淀粉酶与γ-淀粉酶的比例、复合酶添加量、酶解温度、时间和pH值为单因素,研究各单因素对淀粉残留率的影响,用正交法对试验工艺进行优化。结果表明,麦麸中淀粉液化水解残留率最低的工艺条件为α-淀粉酶与γ-淀粉酶的比例6∶4、添加量0.7%、酶解温度40℃、时间90 min、pH 6.5,在此条件下,酶解后麦麸中淀粉的残留率仅为0.62%。  相似文献   

13.
采用Box-Benhnken中心组合试验设计优化荔枝干可溶性固形物双酶提取工艺,建立了包括果胶酶添加量、纤维素酶添加量和酶解时间的三因素回归模型.经回归模型分析并结合验证试验,确定以荔枝干果肉(含水量23.84%)为原料的最佳提取工艺条件为:果胶酶添加量3400 U/g、纤维素酶添加量550 U/g、酶解温度50℃、酶解pH值4.68、酶解时间2h,在该条件下荔枝干可溶性固形物提取率可达75.29%.  相似文献   

14.
以酸浆(Physalis alkekengi)宿萼为试验材料,采用酶法酶解淀粉、蛋白质、脂肪等物质,提取可溶性膳食纤维,运用单因素试验和正交试验对酸浆宿萼中的可溶性膳食纤维提取的最佳工艺进行优化。结果表明,在综合考虑产物提取率、纯度和成本的前提下,最佳酶解提取工艺为在pH 6.5、酶解温度50℃、酶解12 h、醇沉30 min的条件下,原材料中添加纤维素酶5×104 U/g,α-淀粉酶5×102 U/g,木瓜蛋白酶1.2×103U/g,在此条件下得到的提取率为6.5%。  相似文献   

15.
为研究耐高温α-淀粉酶与面条品质的关系,通过考察耐高温α-淀粉酶对面粉糊化特性以及制成面条烹煮损失的影响,找出合适的该酶添加水平和制作面条的工艺参数。结果表明,随着酶添加量的增大,面粉的峰值粘度、谷值黏度、回生值以及最终黏度都呈降低趋势,破损值一直增大。此外,酶添加量与面条的表观、透明性以及光滑性呈负相关,当加酶量为0.1U/g(面粉)时,面条的烹煮损失及面汤的浊度最小,品质较好。添加耐高温α-淀粉酶生产面条的最佳配比为:加酶量0.1U/g、加盐量1%、加碱量0.15%(均以面粉质量计)。  相似文献   

16.
酶解法提取竹笋中不溶性膳食纤维研究   总被引:4,自引:1,他引:3  
州[目的]研究利用酶解法提取竹笋不溶性膳食纤维。[方法]采用正交试验设计对竹笋不溶性膳食纤维的提取条件进行了研究。[结果]各因素对竹笋不溶性膳食纤维提取影响程度依次为:α-淀粉酶〉酶解时间〉木瓜蛋白酶〉pH值〉料水比〉纤维素酶〉酶解温度;竹笋不溶性膳食纤维提取条件的最佳组合为:料水比l:40,α-淀粉酶1600U/g底物,木瓜蛋白酶3000U/g底物,纤维素酶4000U/g底物,pH值5.0,酶解温度55℃,酶解时间1.5h。[结论]筛选出了影响膳食纤维提取的主要影响因素,得到了竹笋膳食纤维酶解法的最佳条件,为进一步改良和优化膳食纤维的成分和生理功能提供了科学依据。  相似文献   

17.
双酶法水解板栗淀粉工艺研究   总被引:2,自引:0,他引:2  
为使板栗中的淀粉能被人体更有效利用,减少板栗饮料生产中的分层和沉淀现象。采用双酶法(耐高温α-淀粉酶、糖化酶)对板栗浆液中的淀粉进行水解。以淀粉水解度为指标,通过单因素试验和正交试验优化,最终确定了制取板栗淀粉水解液的糊化、糖化的最佳工艺条件分别为加酶量8U/g、95℃、pH6.0、时间60min以及加酶量80U/g、60℃、pH4.0、时间50min。  相似文献   

18.
为了探讨以茶叶籽饼粕为原料进行酒精发酵工艺的可行性,以糖化酶加量、温度和时间以及淀粉酒精酵母的发酵时间、发酵温度、接种量和料水比为试验因素,通过单因素和正交试验确定酒精发酵的最佳工艺条件。结果表明:料水比1∶4,采用50U/gα-淀粉酶,80℃,酶解60min;糖化酶添加量为200U/g,酶解90min。在pH=4.5,接种量0.60mL/g,发酵时间为5d,发酵温度为28℃。酒精转化率为34.99%。  相似文献   

19.
为了探讨以茶叶籽饼粕为原料进行酒精发酵工艺的可行性,以糖化酶加量、温度和时间以及淀粉酒精酵母的发酵时间、发酵温度、接种量和料水比为试验因素,通过单因素和正交试验确定酒精发酵的最佳工艺条件。结果表明:料水比1∶4,采用50U/gα-淀粉酶,80℃,酶解60min;糖化酶添加量为200U/g,酶解90min。在pH=4.5,接种量0.60mL/g,发酵时间为5d,发酵温度为28℃。酒精转化率为34.99%。  相似文献   

20.
抗性淀粉提取工艺的研究   总被引:1,自引:0,他引:1  
[目的]优化普鲁兰酶对大米淀粉脱支的工艺条件,以期获得较高的RS产率。[方法]以大米淀粉为原料,用普鲁兰酶对其进行脱支,采用L9(34)正交试验设计优化酶法制备RS的工艺。采用经AACC认定的76-13标准方法测定RS含量。[结果]各因子对RS产率的影响顺序为:加酶量>酶解温度>淀粉浓度>酶解时间,最佳因素水平组合为淀粉浓度25%,加酶量2.4PUN/g(干淀粉),酶解温度60℃,酶解时间14h。[结论]以大米淀粉为原料,采用普鲁兰酶对其进行脱支制备RS的最佳工艺为加酶量2.4PUN/g(干淀粉),酶解温度60℃,淀粉浓度25%,酶解时间14h,在此条件下RS产率为19.16%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号