首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
为了研究大白菜中百菌清残留经臭氧水处理后的去除效果,采用臭氧质量浓度不同和同一臭氧质量浓度浸泡时间不同处理,利用乙腈溶剂提取,固相萃取净化,毛细管柱气相色谱法分离。GC-ECD进行定性定量分析。结果显示,通入臭氧10,15,30和40min制备臭氧水质量浓度为0.99,3.48,5.26和5.64mg/L,百菌清去除率分别为14.7%,90.5%,96.7%和97.5%;说明随着臭氧水质量浓度增大,百菌清残留去除效果越好。当臭氧水质量浓度(5.2~5.3mg/L)一定时,随着浸泡时间延长,百菌清残留去除效果增加;臭氧水浸泡大白菜15min和30min,百菌清残留去除率分别为83.8%,98.3%,同样的时间以自来水做对照组浸泡,百菌清去除率分别为6.9%,18.3%,说明臭氧水去除百菌清农药的效果显著。  相似文献   

2.
应用臭氧降解农药百菌清的试验研究   总被引:21,自引:0,他引:21  
农药残留超标是目前影响我国果蔬质量和食品安全性的一大问题。笔者以农药百菌清为研究对象 ,利用不同质量浓度的臭氧 ,采用不同作用时间 ,进行了百菌清降解试验。试验中发现 ,臭氧初始质量浓度为1.4 mg.L-1时 ,在 0~ 15 min内百菌清残留率快速下降 ,至 15 min时已降至原有量的 4 0 ,之后随着放置时间的延长百菌清的降解程度并无明显增加 ;当臭氧初始质量浓度为 7.0 mg.L-1时 ,5 min后百菌清降解率几乎为 10 0 ;臭氧与百菌清混合后适当的振荡 ,有利于百菌清的降解。试验结果表明 ,臭氧有完全降解百菌清的可能。  相似文献   

3.
采用间歇型补充臭氧(400 mg·h~(-1)),研究不同强度的臭氧对番茄幼苗叶面微生物数量及生长的影响,臭氧每间隔10 min通入一次,共通5次;Ⅰ:每次通15 s,Ⅱ:每次通20 s,Ⅲ:每次通25 s,Ⅳ:每次通30 s。试验结果表明:随着臭氧浓度的增加,番茄叶片表面细菌含量明显下降,放线菌和真菌下降量相对较少;随着臭氧强度的提高,番茄叶片叶绿素含量逐渐降低,膜透性、丙二醛的含量逐渐上升,脯氨酸的含量、过氧化氢酶的活性先上升后下降。说明高浓度臭氧会对植物产生一定的损害。四个处理中,通入臭氧25 s间隔10 min的处理方式(通入臭氧量0.042 mg·m~(-3))对番茄幼苗生长和抑制叶面细菌繁殖较为适宜。  相似文献   

4.
精甲霜灵与百菌清在黄瓜和土壤中的残留降解规律研究   总被引:2,自引:0,他引:2  
陈莉  来晓丹  贾春虹  余苹中  贺敏  赵尔成 《安徽农业科学》2011,39(27):16626-16628,16647
[目的]研究精甲霜灵与百菌清在黄瓜和土壤中的残留状况与残留降解规律,评价精甲霜灵与百菌清在黄瓜上使用的安全性,建立同时测定黄瓜和土壤中精甲霜灵与百菌清残留量的液相色谱分析方法。[方法]黄瓜和土壤中的精甲霜灵与百菌清采用乙腈溶液振荡提取,使用酸性氧化铝固相萃取小柱净化,液相色谱带二极管阵列检测器(DAD)测定,外标法定量;田间试验按照NY/T 788-2004《农药残留试验准则》进行。[结果]在添加量为0.02~2.00 mg/kg时,精甲霜灵在黄瓜和土壤中的添加平均回收率为84.7%~101.0%,变异系数为2.72%~6.46%;当添加量为0.01~1.00 mg/kg时,百菌清在黄瓜和土壤中的添加平均回收率为76.9%~95.8%,变异系数为3.36%~4.90%。精甲霜灵的最小检出量为5×10-10 g,百菌清为2×10-10 g;精甲霜灵的最低检出质量分数为0.02 mg/kg,百菌清为0.01 mg/kg。精甲霜灵和百菌清在黄瓜和土壤中的残留消解动态符合方程Ct=Coe-kt;精甲霜灵在黄瓜中的半衰期为2.8~3.2 d,在土壤中的半衰期为7.8~9.8 d;百菌清在黄瓜中的半衰期为1.3~2.1 d,在土壤中的半衰期为3.7~4.0 d。在黄瓜上施用精甲霜灵.百菌清440 g/L悬浮剂,施药剂量为推荐用量990 g a.i/hm2和推荐用量的1.5倍1 485 g a.i./hm2,施药3~4次,末次施药1 d后黄瓜中的精甲霜灵残留量低于联合国食品法典委员会(CAC)规定的最大残留限量值(MRL)0.5 mg/kg,百菌清残留量低于CAC规定的MRL值5.0mg/kg。[结论]精甲霜灵.百菌清440 g/L悬浮剂按推荐剂量施用,1 d后收获的黄瓜食用安全。  相似文献   

5.
百菌清在土壤中的降解及对土壤微生物多样性的影响   总被引:1,自引:0,他引:1  
在模拟土壤生态系统中测定了百菌清在土壤中的降解动态及其对土壤微生物多样性的影响。结果表明,1.5、3.0和6.0mg·kg-1的百菌清在土壤中的半衰期分别为5.1、4.9、4.4d。3.0和6.0mg·kg-1的百菌清处理(3d)初期对土壤微生物活性产生显著的抑制作用,土壤微生物Simpson、McIntosh指数明显降低,7d后逐渐恢复。Shannon指数变化显示百菌清对土壤微生物群落物种丰富度影响不大。  相似文献   

6.
百菌清的长期施用已使土壤环境逐渐受到污染,农药被植物吸收并在植物体内迁移、代谢和积累后对人体健康和生态环境造成严重威胁。从长期施用百菌清的土壤中经过初筛、复筛筛选分离得到一株能以百菌清为唯一碳源生长并且能够降解百菌清的菌株,通过该菌株16Sr DNA同源性分析,推断该菌株为葡萄球菌属。探讨了该菌降解百菌清的最佳条件:在百菌清浓度为500mg/L,接种量3%,温度37℃,p H值为7.0的条件下培养72h,降解率达到76.54%。  相似文献   

7.
臭氧破解对剩余污泥性质的影响研究   总被引:1,自引:0,他引:1  
为系统研究臭氧破解污泥后对活性污泥的影响,在活性污泥中通入臭氧进行污泥破解静态实验。结果表明,活性污泥进行臭氧破解后,污泥溶液中的SCOD、TN、NH3-N和TP随着臭氧投加量的增加都有不同程度的溶出,其中SCOD在臭氧投加量(O3/ss)为0.12 g/g时浓度从13.7 mg/L上升到433.7 mg/L、TN在臭氧投加量(O3/ss)为0.08 g/g时质量浓度从6.97 mg/L上升到13.92 mg/L、NH3-N在臭氧投加量(O3/ss)为0.1 g/g时质量浓度从0.23 mg/L上升到14.41 mg/L、TP在臭氧投加量(O3/ss)为0.1 g/g时质量浓度从1.01 mg/L上升到14.77 mg/L;污泥破解后,污泥溶液中的pH值随臭氧投加量增加逐渐降低,但降低幅度不大。  相似文献   

8.
臭氧和臭氧水在食品加工业中应用广泛,在处理水产品、水果蔬菜保鲜等方面的运用越来越多。为达到冷鲜鱼肉质量控制的目的,研究臭氧水的溶解度变化、质量浓度变化、生产减菌试验、保质期试验,以探讨臭氧水在冷鲜鱼肉中的应用情况。结果表明,在试验环境下,臭氧的质量浓度随通入臭氧时间的增加逐渐增大;在水量一定的条件下,臭氧的溶解量到达峰值时则不再增加;随着放置时间的延长,臭氧水的质量浓度逐渐降低,降解率增大。在喷淋减菌试验中,臭氧水对大肠杆菌、金黄色葡萄球菌的平均杀菌率分别为80%、60%;鱼肉样品经自来水清洗后,采用质量浓度为3.60 mg/L(通臭氧30 min)的臭氧水喷淋3 min,进行托盘包装后4℃贮藏保质期可延长2 d。  相似文献   

9.
[目的]针对菌株SL-1(芬氏纤维微细菌Cellulosimicrobium funkei)和SL-6(木糖氧化无色杆菌Achromobacter xylosoxidans)对土壤中敌草隆的降解情况及影响因素展开研究.[方法]采用室内盆栽试验,并用生物法进行验证.[结果]药后15 d,菌株SL-1和SL-6对敌草隆含量100 mg/kg的土壤降解效果最佳,降解率分别达到63.4%和77.3%;两菌株对敌草隆含量1000 mg/kg的土壤降解效果最慢,降解率分别为51.0%和57.1%.敌草隆在土壤中的消解动态符合一级动力学方程,在敌草隆含量100,200,500,1000 mg/kg的土壤中,不接菌时敌草隆的半衰期分别为17.77,24.75,25.67,27.72 d;当接入菌株SL-1时,其半衰期分别低至9.9,11.75,13.08,13.86 d;当接入SL-6菌株时,其半衰期分别低至7.14,10.5,10.83,12.38 d.不同接菌量的土壤中敌草隆降解效果显示,当菌株SL-1接菌量为10%时,降解率最高;菌株SL-6不同接菌量的降解率出现先增高后降低的趋势,接种量为15%时降解率最高.药剂初始浓度为100 mg/kg时,两株菌株对药剂降解率最高,分别为63.5%和77.3%,较不接菌的自然降解率45.4%分别提高了18.1个百分点和31.9个百分点.土壤湿度对敌草隆的降解有显著影响,当含水量最低为200 g/kg时,CK及接菌后的降解率分别为15.6%,35.5%和39.4%;而当含水量升至800 g/kg时,CK及接菌后的降解率分别高达46.9%,69.3%和74.9%.温度为30℃时,两菌株的降解率最高,较CK分别增加了20.4个百分点和25.3个百分点;且温度过高或过低均会对菌株的活性产生影响,导致降解速率变慢.室内盆栽法验证菌株的安全性表明,菌株SL-1和SL-6能一定程度的减缓敌草隆对棉苗的损伤,其中对照组棉苗长势最好,其次是两菌株处理带药土壤中的棉苗.[结论]菌株SL-1和SL-6在一定程度上可以降低土壤中敌草隆的含量,具有一定的修复作用.  相似文献   

10.
[目的]为了解重金属离子对土壤中百菌清光解的影响,选取污染土壤中常见重金属离子Cu(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)进行光解试验.[方法]采用氙灯为入射光源,研究百菌清在添加Cu(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)3种重金属的土壤表面的光解特征.[结果]在模拟太阳光照射下,百菌清在土壤表面的光解符合准一级反应动力学.3种重金属的添加对百菌清的光解起到显著的抑制作用.Cu(Ⅱ)(200 mg/kg)、Cd(Ⅱ)(10 mg/kg)和Cr(Ⅲ)(25 mg/kg)使百菌清的光解速率常数由原来的0.549 h-1分别降低为0.333、0.310和0.471 h-1.腐殖酸(humic acid,HA)对百菌清的光解起到光敏化促进作用.当土壤中添加1%、2%和3%的HA时,百菌清的光解速率常数由0.549 h-1分别提高到0.646、0.907和0.584 h-1.而当重金属与HA共存时,HA的光敏化作用受到显著抑制.HA添加浓度为1%时,Cu(Ⅱ)(200 mg/kg)、Cd(Ⅱ)(10 mg/kg)和Cr(Ⅲ)(25mg/kg)的加入分别使百菌清光解速率常数降低到添加1%HA时的43.5%、33.9%和17.5%.[结论]土壤表面的百菌清在光照下可发生较快的光解,但Cu(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)等重金属的加入会降低百菌清的光解速率.  相似文献   

11.
[目的]建立同时检测水果中五氯硝基苯和百菌清残留量的气相色谱-质谱联用(GC-MS)分析方法。[方法]样品经提取净化后,采用内标法进行检测。优化色谱条件,采用选择性离子扫描(SIM)模式进行质谱检测。[结果]在0.10~2.00μg/mL添加水平,2种农药的平均回收率在69.00%~96.15%,相对标准偏差为1.23%~3.60%(n=8)。以信噪比RSN=3计算各农药残留的最低检出限,五氯硝基苯为0.002 mg/kg,百菌清为0.001 mg/kg。[结论]该方法结果准确、重现性好,检出限相对较低,可满足水果中五氯硝基苯和百菌清残留量的检测要求。  相似文献   

12.
摘要:采用盆钵试验来探究Sphingomonas sp.DC-6对玉米乙草胺药害的修复功能。结果显示,菌株DC-6具备高效降解乙草胺的能力,仅在48 h就能完全降解50 mg/L乙草胺。当玉米种植于乙草胺含量不低于1.0 mg/kg干土的土壤中,生长受到明显抑制,主要表现为植株矮小和叶片卷曲畸形,而当接入DC-6后,玉米植株前期虽生长迟缓,但叶片无畸形,后期生长情况与未受药害的处理组相近。将菌株DC-6接种到含1.0 mg/kg乙草胺土壤中,第3 d时乙草胺降解率为57.14%,而第15 d时降解率达到89.29%。本文通过qPCR技术进一步探究DC-6菌株定殖于玉米根际土的情况,总体上,接入根际土后的菌株DC-6数量呈下降趋势,并且前9 d下降速率较快,之后下降幅度明显降低。加药加降解菌组与只加降解菌的处理组相比下降幅度较小,且在第15 d时DC-6的菌落数平均为245 cfu/g,表明DC-6可有效在玉米根际定殖2周左右。  相似文献   

13.
土壤中五氯酚的测定及其生物降解研究   总被引:11,自引:0,他引:11  
探索了土壤中五氯酚的测定方法。在藏红T分光光度法的基础上 ,用蒸馏法直接提取土壤中的五氯酚进行测定 ,效果较好 ,克服了常用的超声提取及萃取方法测定结果不稳定的弊端。当土壤中五氯酚浓度为 5 0~ 1 0 0mg/kg时 ,采用上述方法测定回收率为 85 .5 0 %~95 .38% ,灵敏度为 0 .0 1mg/kg。此外在利用黄孢原毛平革菌对灭菌土壤中五氯酚的降解试验中 ,应用上述方法成功地进行了土壤中五氯酚的测定。当土壤中五氯酚污染水平为 5 0~2 0 0mg/kg时 ,黄孢原毛平革菌对五氯酚具有较强的降解作用。  相似文献   

14.
梨果实中百菌清的残留降解动态及安全性分析   总被引:1,自引:0,他引:1  
采用毛细管气相色谱(GC-ECD)法研究梨上百菌清的残留动态及套袋对百菌清残留的影响,测定方法的最低检出浓度为0.01 mg/kg,其平均添加回收率为70.3%~96.2%,RSD为3.6%~6.2%。通过生长季节残留浓度的检测对北京郊区常规管理条件下百菌清的安全性进行分析。结果表明:百菌清在梨上的残留消解符合一级动力学方程。75%百菌清(chlorothalonil)可湿性粉剂推荐剂量稀释500倍液(A.I.1 500 mg/kg)施药1次,降解半衰期为3.22,1 d后残留低于1.0 mg/kg;加倍剂量稀释250倍液(A.I.3 000 mg/kg)施药1次,降解半衰期为3.53,3.30 d后残留低于1.0 mg/kg;A.I.1 500 mg/kg施药3次,7 d后残留低于1.0 mg/kg;A.I.3 000mg/kg施药3次,14 d后残留低于1.0 mg/kg。百菌清主要残留于梨皮中,套袋后用药,采收时百菌清残留低于中国、欧盟、韩国最高残留限量(1.0 mg/kg)。  相似文献   

15.
改良剂与植物协同作用治理污染土壤,结果表明:植物种类对土壤中硝态氮浓度的变化影响非常显著,种植小麦的土壤中硝态氮浓度均从692.19 mg/kg降至100 mg/kg以下;当沸石粒径1~2 mm,改良剂与土壤比例为3:50时,种植小麦的土壤中硝态氮浓度降至43 mg/kg。改良剂种类对土壤中铵态氮浓度的变化影响非常显著,当沸石粒径2~3mm,改良剂与土壤比例为10:50,改良第15天铵态氮浓度由23 593.75 mg/kg降至3 300mg/kg。改良剂、植物对土壤中硫酸根主要表现为解吸作用,改良剂种类对土壤中硫酸根浓度的变化影响非常显著,用石灰石改良剂改良土壤第7天,土壤中的铵态氮浓度由370 mg/kg至900 mg/kg。  相似文献   

16.
采用气相色谱法建立了苹果和土壤中三唑磷残留量检测方法。样品中残留的三唑磷用乙酸乙酯提取,硅胶柱净化,气相色谱氮磷检测器测定。检测方法研究发现,三唑磷在苹果中存在基质响应增强效应,采用含有苹果基质的标准溶液进行校正可以消除基质效应的干扰。方法最小检出量(LOD)为0.05 ng,最低检出浓度(LDQ)为0.02 mg/kg,3个添加水平的平均回收率为89.1%~95.0%,相对标准偏差(RSD)为3.4%~8.6%(n=5)。残留研究表明:①三唑磷在苹果中的半衰期20.6~22.8 d,在土壤中的半衰期为10.7~15.4 d。②三唑磷在苹果中的残留量随着施药浓度和施药次数的增加而增加,随着采样间隔时间的延长而降低。③用20%三唑磷乳油2000倍液施药2次,距末次施药后30 d采样测定,全果中的残留量为0.061~0.139 mg/kg,低于WHO/FAO规定的三唑磷在梨果类水果中的MRL值0.2 mg/kg。  相似文献   

17.
【目的】筛选可降解二甲四氯除草剂的内生真菌,研究内生真菌对二甲四氯的降解特性和途径,为除草剂污染的微生物治理提供理论依据。【方法】采用平板培养法从被二甲四氯严重污染的飞机草中筛选可降解二甲四氯除草剂的内生真菌;采用形态学方法观察内生真菌在培养基上的形态,结合分子生物学方法对内生真菌的ITS、TUB和LUS序列进行克隆和测序,对内生真菌进行鉴定;通过单因素法优化内生真菌在无机盐培养基中对二甲四氯的降解条件(温度、pH和营养源);并采用液相色谱标准品比对、气相色谱—质谱联用仪(GC-MS)和液相色谱—质谱联用仪(LC-MS)鉴定内生真菌在无机盐培养基中降解二甲四氯的产物。在30℃恒温培养箱中,分别添加内生真菌到不灭菌土壤和灭菌土壤中,同时设不添加内生真菌的土壤为对照组,测定二甲四氯在土壤中的降解速率。【结果】从飞机草中初筛发现1株内生真菌可很好地降解二甲四氯,编号为E68,结合形态学和基因序列分析可将E68鉴定为树状炭角菌(Xylaria arbuscula)。在二甲四氯初始浓度为50.0 mg/L条件下,E68降解二甲四氯的最优条件是pH 5.0、温度28℃和添加0.5%的葡萄糖,7 d后其降解率为97.03%。E68在无机盐培养基中降解二甲四氯的主要产物为4-氯-2-甲基苯。在含有2.5 mg/kg二甲四氯的土壤中添加E68,可明显提高二甲四氯在土壤中的降解率;与不添加E68的土壤相比,在不灭菌和灭菌土壤中分别接入E68后,二甲四氯的降解半衰期分别提高2.8和2.5倍。【结论】从飞机草中分离出的内生真菌E68在无机盐培养基和土壤中可有效降解二甲四氯,具有修复环境中二甲四氯污染的应用潜力。  相似文献   

18.
本试验设置两个臭氧浓度(活性炭过滤大气-O3,〈10μg/kg;高臭氧浓度+O3,约为80μg/kg)和两个镉浓度(-Cd,0 mg/kg;+Cd,30 mg/kg),采用开顶式同化箱(open-top chambers,OTCs)研究臭氧和镉双重胁迫对冬小麦(Triticum aestivumL.cv.JM22)花后光合和产量性状的影响。结果表明:花后14天,与对照相比,臭氧导致光合速率(Asat)、最大光化学效率(Fv/Fm)分别下降7.7%和3.1%;在臭氧和镉双重胁迫下,进一步下降,分别下降了15.8%和6.9%。气孔导度(Gs)以及光化学淬灭(qP)有相同变化趋势。臭氧加镉处理(O3+Cd)又进一步降低穗粒数以及千粒重导致单穗粒重显著减少。  相似文献   

19.
[目的]明确施用通用调理剂对土壤PCB28降解的影响。[方法]土壤添加2 mg/kg PCB28后,根据不同浓度通用调理剂、有机肥和含水率等设置12个处理,开展培养试验,并于培养0、14、21、28 d采集土样分析PCB28浓度。[结果]施用调理剂能够促进土壤PCB28的降解,其降解率为48.6%,施用有机肥可以继续促进PCB28的降解率至59.8%,并且提高含水率能够进一步提高PCB28的降解率至67.9%。[结论]施用0.4 mg/g调理剂、0.7 mg/g有机肥和提高土壤含水率能够显著提高土壤PCB28的降解率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号