首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
通过对3种不同水分(偏低水分11.8%、安全水分13.3%和偏高水分16.3%)的玉米在30℃条件下,密闭储藏环境内N2、O2和CO2百分浓度变化的测定,研究密闭储藏环境条件下玉米粮粒周围环境气体成分浓度的变化规律.20 L规模的试验室研究结果表明:不同水分玉米在密闭储藏时环境中N2浓度随时间的变化均不大;不同水分玉米在密闭储藏时环境中O2浓度与储藏时间呈负相关;不同水分玉米在密闭储藏时环境中CO2浓度与储藏时间呈正相关.在气调储藏时,对偏低水分和安全水分的玉米可充分利用粮粒的自呼吸使环境中的O2浓度在21 d内迅速下降,后期可通过粮粒的自呼吸使O2浓度维持在5%左右,偏高水分的玉米在11 d内即可使O2浓度迅速下降,但后期O2浓度接近0%,无氧呼吸加剧.通过对玉米密闭储藏环境中气体浓度以及耗氧量和CO2累积量随时间的变化趋势线进行回归分析,得到30℃条件下不同水分玉米密闭环境中N2、O2和CO2的回归方程以及耗氧量和CO2累积量的回归方程,利用相应回归方程,可获得玉米在密闭储藏时环境中不同储藏时间段的气体浓度,为气调储藏时玉米粮粒自呼吸的合理利用提供基础技术参数和数据模型.  相似文献   

2.
通过对3种不同水分(偏低水分11.8%、安全水分13.3%和偏高水分16.3%)的玉米在4种不同温度(15℃、20℃、25℃和30℃)条件下,自身呼吸消耗O2的百分含量的测定,研究密闭储藏环境条件下玉米粮粒呼吸速率的变化规律。20L规模的试验室研究结果表明:玉米的呼吸速率随储藏时间和氧浓度变化均呈非线性变化,在同一温度条件下,含水量越高的玉米粮粒呼吸速率越快,对相同水分的玉米粮粒,温度越高呼吸速率越快。15℃条件下呼吸速率的变化情况为:偏低水分0.047~0.431mL·g·d-1、安全水分0.059~0.574mL·g·d-1、偏高水分0.071~0.707mL·g·d-1;20℃条件下呼吸速率的变化情况为:偏低水分0.143~0.520mL·g·d-1、安全水分0.183~0.734mL·g·d-1、偏高水分0.173~0.707mL·g·d-1;25℃条件下呼吸速率的变化情况为:偏低水分0.199~0.910mL·g·d-1、安全水分0.192~1.170 mL·g·d-1、偏高水分0.241~1.197mL·g·d-1;30℃条件下呼吸速率的变化情况为:偏低水分0.194~1.360mL·g·d-1、安全水分0.203~1.541mL·g·d-1、偏高水分0.256~1.964mL·g·d-1;相同水分的玉米粮粒呼吸速率随氧浓度的降低而减弱。通过对玉米粮粒呼吸速率随时间的变化和氧浓度的变化趋势线进行回归分析,得到不同温度条件下不同水分玉米呼吸速率的回归方程,利用相应回归方程,可获得密闭环境条件下储藏玉米在不同时间以及不同氧浓度条件下的呼吸速率,为气调储藏时玉米粮粒自呼吸的合理利用提供基础技术参数和数据模型。  相似文献   

3.
以常温下已储藏1年的3种不同水分(12.6%、16.3%和18.1%)的自然带菌冬小麦为材料,测定3种不同温度(20℃、25℃和30℃)条件下密闭储藏空间内小麦呼吸时释放CO_2的量,研究储藏环境中不同氧浓度(0、2%、5%、10%和21%)对自然带菌小麦呼吸速率的影响。结果表明:呼吸速率随氧浓度的升高先降低后升高,安全水分小麦的呼吸速率在不同环境条件下受氧浓度变化影响不显著,高水分小麦的呼吸速率在不同环境条件下受氧浓度变化影响差异显著。在本研究所得数据的基础上,建立了基于氧气浓度变化的呼吸速率数学模型,用以预测不同氧气浓度条件下自然带菌小麦的呼吸速率。  相似文献   

4.
以自然带菌稻谷和玉米为材料,通过测定粮食在密闭环境中释放CO2的量,研究不同水分粮食(稻谷13.4%、14.5%和18.5%,玉米13.7%、15.3%和16.5%)在不同温度(20℃、25℃和30℃)和不同氧浓度(0、2%、5%、10%和21%)条件下的呼吸速率。以研究所得数据为基础,建立了基于温度、粮食水分和氧气浓度3个自变量因素的呼吸速率数学模型,用以预测不同储藏条件下自然带菌稻谷和玉米的呼吸速率。  相似文献   

5.
偏高水分玉米入仓储藏,应用低温压盖密闭和膜下环流通风均衡粮温集成技术,保持低温储粮状态,经过实仓试验,达到安全储藏和保水的目的,对试验项目进行研究与分析。  相似文献   

6.
蒜薹贮藏需要管理与技术紧密配合。从收购到出库长达 7~ 9个月贮藏期,每一环节、每一步骤都要严格管理,才能确保蒜薹的贮藏质量。作者针对蒜薹贮藏保鲜过程中应注意的问题谈以下几点。    1温度   几年来的实践表明,射阳蒜薹适宜低温管理,一般贮藏温度在 0~— 0.8℃之间,温差越小越好。    2气体成分   调节好蒜薹袋内 O2和 CO2浓度是保证蒜薹保鲜质量的关键。低 O2、高 CO2、配合低温能更有效地抑制蒜薹的呼吸代谢。 2.1 O2的作用   O2是供蒜薹呼吸的,贮藏环境中 O2偏高或偏低都对蒜薹贮藏不利。低 O2能抑制蒜薹呼吸…  相似文献   

7.
CO2气调储粮技术对粮食真菌的抑制效果研究   总被引:7,自引:4,他引:7  
进行了粮食在不同CO2气体浓度、不同粮食水分、不同环境温度条件下储藏后的粮食真菌区系变化情况、尤其是在粮食水分较高、储藏温度较高的条件下CO2对粮食真菌的抑制效果进行了实验室研究和绵阳CO2气调库粮食真菌的区系变化实仓研究。研究结果表明,CO2气调储粮方法对水分在15%以内的各种粮食上着生的粮食真菌于15~35℃的温度范围内在较长时间内具有很好的抑制作用,可用于低水分粮的长期储藏;60%高浓度的CO2对水分在15%~16%的高水分粮于15~25℃温度范围短时间内(品质较差的粮食15天、品质较好的粮食140天左右)有较好的防霉作用,但粮食感官品质有所下降;35%以下浓度的CO2对高水分粮在15~35℃温度范围内均不能较好地抑制粮食真菌的生长,粮食储藏一段时间后就发生霉变;CO2不适宜于高水分粮在常温下的长期储藏,即使是60%以上浓度的CO2也不能很好地抑制高水分粮上着生的引起粮食霉变的储藏性真菌。  相似文献   

8.
在山东区域内选择具有储粮代表性的小麦、玉米、稻谷储备仓,实施了不同水分含量的实仓试验,采集试验粮表层温度、水分、CO_2浓度和真菌孢子计数等数据,探索试验数据与安全储粮的相互关系。试验表明:山东区域的小麦、稻谷、玉米的储藏安全受粮堆温度、水分含量的制约,温度、水分越高储藏安全风险越大,粮食水分含量与反映粮食呼吸状况的CO_2浓度具有较显著的正相关。自然条件下,山东小麦、玉米、稻谷的安全储藏,其水分含量不应高于13.0%、14.0%和14.5%。  相似文献   

9.
南方长期安全储藏高水分玉米的尝试   总被引:3,自引:2,他引:1  
在高水分玉米储藏过程中,采用高密闭、长时间保持粮堆内PH3有效浓度,能较好地抑制粮食微生物的生长繁殖,有效地抑制粮食呼吸,控制粮温上升。试验证明:在南方全年较长时间高温高湿的环境条件下,半安全粮、危险粮也可以度夏,同时也能进行较长时期(2年以上)安全保管,保持良好的粮食品质,达到安全储藏的目的。  相似文献   

10.
福建地处我国东南沿海,属亚热带湿润气候,全年大部分时间处于高温高湿环境条件下,特别是夏季气温很高,最高可达35℃以上,不利于玉米的安全保管,玉米在储藏中极易发热霉变,这给高水分玉米的安全储藏带来挑战。高水分玉米经晾晒烘干、机械通风降水后,按照国标(常规储粮技术规范)要求,入仓时玉米的水分应控制在14.0%以内,常规储藏2年后,出仓时水分大都在13%左右,因保管水分降低导致出仓损耗数量增加,进  相似文献   

11.
粮食储备安全生产关键技术该项目提出了粮食合理储备量以及合理分布;研究适合不同生态区域的粮食储备安全生产技术;建立粮食储备安全生产数据库;研究主要储备粮种在不同水分、温度及O2与CO2浓度条件下经1年储藏期的品质变化规律,确定品质变化敏感特征指标;建立储备粮品质监测系  相似文献   

12.
针对沿海地区夏季气候高温高湿,玉米安全保管难度大的特点,对高大平房仓储存的高水分玉米通过及时全仓密闭,适时进行磷化铝环流熏蒸使粮堆内保持有效磷化氢浓度,从而抑制虫霉孳生,确保了高大平房仓储存高水分玉米安全度夏。通过试验证明,该方法可以有效控制虫霉孳生,防止结露劣变,保持了储粮较好的品质,达到了入库高水分玉米安全度夏、安全储藏的目的。  相似文献   

13.
针对南方地区高温高湿的气候条件,结合玉米的储藏特性,对仓房进行密闭,使玉米所处的环境完全独立于外界环境,采用除湿机去水除湿,降低湿度,再通过离心风机强迫干湿空气流动,逐渐降低玉米水分,达到降水目的,确保玉米安全储存。  相似文献   

14.
巴西研究者最近报道了对不同水分的玉米在不同储藏温度、不同的储藏条件(如施用菌剂,或采用气调储藏、机械通风储藏)下,储藏在钢板仓内,检测其28d中黄曲霉素素生成的情况。试验结果,储藏在18℃~20℃温度下,水分偏低而未采用机械通风的玉米.黄曲霉毒素生成量低,以Ipro  相似文献   

15.
以新鲜菜花为试验原料,研究不同浓度的O2和不同浓度的CO2气体配比混合对菜花气调贮藏的影响。贮藏期间通过对新鲜菜花失质量率、VC、可滴定酸、呼吸强度、PPO酶活的测定,确定最佳贮藏条件。试验表明,菜花在4℃,O2体积分数为5%和CO2体积分数为3%的气体配比混合条件下,贮藏时间为17 d。菜花贮藏环境中的最大可耐受CO2体积分数为6%。  相似文献   

16.
从粮食水分与环境因子的关系及影响粮食安全水分的因素进行分析,结合储藏实践,提出关中地区主要储藏品种小麦和玉米在不同条件下的安全储存水分及管理措施。  相似文献   

17.
通过模拟储藏,研究了温度和时间对储藏籼稻谷水分、细菌量和霉菌量的影响.结果表明:随着温度的升高和时间的延长,符合安全水分的稻谷含水量下降,在15℃、20℃时,细菌量和霉菌量基本维持原来水平,储藏200 d后,稻谷的色泽、气味正常,无霉变、生虫现象,而当储藏温度超过25℃时,细菌量和霉菌量下降,但储藏200 d后,稻谷的色泽、气味不正常,并出现生虫现象,因此低温储藏有利于稻谷水分的保持和延缓细菌和霉菌的生长,减少数量和霉变损失.方差分析和回归方程的拟合表明温度和时间是储藏稻谷细菌量或霉菌量变化的极显著影响因素,并且细菌量或霉菌量与储藏温度和时间呈显著的二元线性关系.  相似文献   

18.
以正丁醇作为防霉剂,将0.085%(W/W)0.13%、0.2%剂量喷酒到东北产生分为24.5~25.4%的黄玉米中,每处理3万斤做席囤,进行密闭储藏。以粮温开始异常上升作为实验终止的依据,0.085%剂量正丁醇处理的玉米比未处理的对照延长储存5天,0.13%剂量延长储存7天,0.2%剂量至少延长储存10天。在储藏期间玉米的脂肪酸值、还原粮值、霉菌菌相等变化都不大,霉菌的带菌量只是个别部位有所增加。实验结果表明正丁醇作为高水分玉米应急储藏的防霉剂可以延长安全储藏时间,以达防霉保鲜的目的。  相似文献   

19.
通过模拟储藏,研究了高湿(85%)条件下温度对储藏稻谷水分和脂肪酸值的影响。结果表明储藏环境的温度和时间对稻谷的水分、脂肪酸值有显著影响,随着储藏温度的升高和时间的延长,水分呈上升、平稳、下降的趋势,而脂肪酸值呈增加的趋势。稻谷水分(W)和脂肪酸值(F)、储藏温度(T)、时间(D)的二元线性回归方程分别为W=-0.04411T-0.02783D+17.4809(R2=0.457271,P<0.01),F=0.432343T+0.549133D-2.99971(R2=0.91418,P<0.01)。进一步的研究表明稻谷霉菌量和脂肪酸值相关系数高达0.798521,稻谷脂肪酸值的变化主要是由霉菌引起。  相似文献   

20.
长期施肥下红壤旱地CO2、N2O排放特征   总被引:2,自引:0,他引:2  
摘 要:基于中国农业科学院红壤实验站长期定位试验,采用静态箱/气相色谱法,研究红壤旱地小麦生长季节不同施肥处理(CK、NP、NPK、NPKM、1.5NPKM)下土壤CO2、N2O排放差异。结果表明,长期不同施肥处理形成不同的土壤肥力以及作物生长的差异是影响土壤呼吸CO2、N2O排放的重要因素,红壤旱地小麦季土壤呼吸CO2、N2O排放具有明显的季节变化特征;在小麦生长季,不同施肥处理之间土壤呼吸CO2、N2O排放通量差异显著,土壤呼吸CO2年累积排放量在8284.02 kg?ha-1~15863.48 kg?ha-1之间,N2O年累积排放量在0.37 kg?ha-1~2.04 kg?ha-1之间。各处理土壤呼吸CO2排放通量的大小变化:1.5NPKM>NPKM>NPK>CK>NP;土壤呼吸N2O平均排放通量大小顺序为1.5NPKM>NPKM>NPK>NP>CK;有机肥的施用显著增加了土壤呼吸CO2和N2O的排放(P<0.05)。土壤呼吸CO2与N2O排放分别与土壤温度和土壤水分显著相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号