首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
采用数值计算的方法,基于Navier-Stokes方程κ-ε紊流模型,研究了轴流转桨式水轮机内部的流动特性。通过分析水流自活动导叶出口到转轮进口的轴向速度,以及速度矩在不同工况下的分布规律,说明活动导叶开度不同时流道转弯对转轮叶片进口速度分布产生一定的影响:其中小流量工况时,流道转弯对轴向速度起到改变其分布规律的作用,对速度矩起增加的作用,在大流量工况时流道转弯对轴向速度起平衡作用,对速度矩起到减小的作用。这些研究对转轮进口处的位置确定,提供了参考,达到优化叶片提高水轮机效率的作用。  相似文献   

2.
混流式水轮机叶道涡流动特性研究   总被引:1,自引:1,他引:0  
叶道涡是混流式水轮机运行在偏工况下出现的一种典型的空化流动现象,其起源于两叶片之间而消失于转轮出口附近,对水轮机内部的压力及速度场有直接的影响。为了阐明叶道涡演化特征及其对水力性能的影响,该文基于SST k-ω湍流模型及Zwart空化模型对某一低水头混流式模型水轮机进行瞬态空化两相流动的数值模拟及试验研究。结果表明,叶道涡流动结构的数值模拟与试验观测结果基本一致。在叶道涡工况区,转轮内空泡体积呈周期性脉动,叶道涡频率为转频的90%。叶道涡沿叶片展向发展于轮毂面,主水流在离心力的作用下向下环方向偏移,迫使叶道涡向出水边方向移动,故涡束沿叶片出口边背面靠近轮缘处流出。转轮内有限空间限制及偏工况下负冲角的综合作用,是形成叶道涡的主要原因。压力脉动及其频谱分析表明,活动导叶与转轮之间的无叶区、转轮叶片以及尾水管内均捕捉到了叶道涡频率,表明叶道涡频率同时向上游及下游传播。叶道涡对尾水管内部流场有较大影响,表现为锥管段及肘管段中心处形成较大回流区。该研究为进一步深入理解复杂的叶道涡流动特性提供一定参考。  相似文献   

3.
贯流式水轮机是农村小水电电网中的重要组成部分,其低水头、大流量的特点,易导致电站机组效率低下、出力降低。而贯流式水轮机运行中的最优运行问题很少引起学者关注,目前最优工况的研究仅仅局限于某点或线。该文从转轮水力损失的角度,理论上分析了影响贯流式水轮机效率的翼型阻力损失、端部损失与撞击损失,依据现场实际导叶与桨叶翼型,在定水头、定桨叶方式下,通过改变转轮进口水流角,对转轮进、出口速度三角形进行计算,从能量角度,进行工况优化,得到转轮10°工况下导叶在53.9°~58.8°的最优特性区域,效率可提高约3%~8%。利用数值仿真技术,对其工况做相应的数值仿真,并进行流场分析,在此基础上,进行真机试验,结果与理论分析相符,与数值仿真计算的误差小于2%,采用此方法对电站机组的全工况进行了计算,全工况范围内进行区域工况优化,得到转轮在7°~42°,导叶在0~78°的最优特性曲线,通过一段时间运行,数据显示机组的能量特性与稳定性效果比较理想。  相似文献   

4.
水轮机频繁经历变负荷工况转换过程,使得机组在较短时间内工作参数急剧变化,严重影响电站稳定运行。该研究以某贯流式水轮机为研究对象,在考虑自由液面和水体重力的情况下,采用动网格技术对贯流式水轮机相同出力范围下的减、增负荷过渡过程的动态特性进行分析。研究结果表明:由于增负荷和减负荷过渡过程的起始工况导致起始流动状态不同,因此在相同出力时,机组内的流动分布不同,减负荷过程尾水管内的涡流面积及强度明显小于增负荷工况,且尾水管涡带尺度也明显小于增负荷过程;相比于增负荷过程,减负荷过程中转轮叶片大范围的低压区极易引发空化;机组内的水压力脉动主要以尾水管涡带引起的0.1fn(fn为转频)低频压力脉动和转轮的旋转引起3fn的高频压力脉动为主,增负荷过程的压力脉动幅值明显大于减负荷过程,两种压力脉动共同作用,使得贯流式水轮机主要振动区域集中于转轮。研究结果对贯流式水轮机的设计与运行具有一定的指导意义。  相似文献   

5.
贯流式水轮机飞逸过渡过程瞬态特性CFX二次开发模拟   总被引:4,自引:4,他引:0  
当水轮发电机组处于飞逸状态时,水轮机内部会出现严重的不稳定现象,容易引起机组的振动。贯流式水轮机因为水头低、流量大、通道短等特点,其过渡过程与常规的立式水轮机有许多不同之处。基于此,该文通过CFX16.0和Fortran程序的二次开发建立了水轮机飞逸过程的数值计算方法,对贯流式水轮机的飞逸过程进行了数值模拟,获得了转速、流量、力矩、轴向力等外特性参数在飞逸过程中的变化历程以及水轮机内部流场的动态特性。结果表明:计算得到的最大飞逸转速为2 190 r/min与试验测得的结果较为接近,误差不超过2.5%,验证了该数值方法的可靠性;飞逸过程中其余外特性参数的变化规律均符合高比转速水轮机飞逸过程的流动规律;在飞逸过程中,由于转速和流量的增加使得水轮机转轮进口相对液流角降低,水流在叶片吸力面进水侧靠近叶缘处发生撞击形成高压,在叶片压力面进水侧叶缘处出现脱流产生负压,并随着转速的升高,高压区和低压区逐渐增大,转轮叶片受力变得极为不均匀容易引起疲劳破坏;同时,转速的增加使得转轮出口环量增加,在尾水管内部将会形成偏心的螺旋涡带,引起了强烈的低频压力脉动,振幅最大可达到试验水头的104%,不利于机组的安全稳定运行。  相似文献   

6.
轴流式水轮机叶片进水边形状对其性能的影响   总被引:4,自引:3,他引:1  
针对轴流式水轮机叶片几何形状差异对水轮机的运行性能和运行范围产生的影响,研究了轴流式水轮机不同叶片进水边形状与水轮机性能参数之间的关系。在相同叶片安放角的情况下,对具有3种不同叶片进水边形状的轴流式模型水轮机进行数值研究。研究结果表明:在相同的叶片安放角的情况下,不同的叶片进水边形状不仅可以改变流道中从轮毂到轮缘的流量及环量分配;而且能够有效的改善叶片正背面压力分布,减小转轮内部的低压区,提高水轮机效率及空化性能;同时不同的水轮机进水边形状可以调节水轮机运行范围。研究结果可为水轮机的优化设计提供理论指导。  相似文献   

7.
不完全蜗壳轴流式水轮机大流量工况性能分析   总被引:1,自引:1,他引:0  
为了研究大流量工况下,轴流式水轮机机组振动严重、效率锐减、空蚀破坏严重、叶片产生裂纹等问题产生的原因,该文以某不完全蜗壳轴流转浆式水轮机模型为研究对象,对其最优工况及大流量工况进行了全流道数值分析,以揭示引起大流量工况下水轮机运行性能变差的主要原因,结果表明:水流惯性使大部分流量直接由非蜗形区域进入导水机构,蜗形区域过流量偏少,蜗壳内流场沿圆周方向分布的轴对称性变差,并且将这些不均匀性传递向下游;水流沿导叶高度方向分配不均匀,蜗形段的活动导叶叶道内产生叶道涡,形成圆周方向不均匀的非稳定源,并对下游转轮产生影响;蜗壳及导叶内的不均匀水力要素传递向下游,使得转轮内不同位置的叶片所受水力矩产生差异,转轮叶片在旋转过程中受交替动应力作用而容易产生裂纹和破坏。因此在大流量工况下,这些水力不稳定因素不仅限制了水轮机的运行范围,而且对机组的稳定性及强度产生威胁。该研究结果对轴流水轮机的水力设计以及大流量工况下的实际运行具有一定的参考意义。  相似文献   

8.
基于双向流固耦合的贯流式水轮机动力特性分析   总被引:1,自引:1,他引:0  
为了深入研究流固耦合作用对贯流式水轮机转轮动力特性及内部流场的影响,文中采用商业软件CFX和ANSYS APDL对贯流式水轮机流体域和固体域进行耦合求解,分析了耦合作用对结构应力及应变的影响,并将耦合数值计算得到的转轮外特性与实测值进行了对比。结果表明:考虑耦合作用后,转轮的效率、水头与耦合前相比都有不同程度的下降,最大值分别为0.6%、0.21 m。同时在靠近叶片出水边轮缘附近,耦合后压力面与吸力面压力差有所下降,说明耦合作用会降低转轮的水力性能。2种耦合计算方法求解得到的叶片的等效应力分布基本一致,应力集中都出现在转轮叶片与枢轴法兰联接处,同时双向耦合下最大等效应力的主频与单向耦合相比有明显下降的趋势,由于双向耦合考虑了结构在运动过程中周围水体与结构的相互影响。该研究为实际工程中准确地进行转轮的水力性能预估和叶片结构在水中瞬态响应计算提供了参考。  相似文献   

9.
多能互补系统中新能源发电的不稳定性使得作为调能机组的水电机组频繁在水力效率低、振动剧烈的低负荷区运行,严重影响机组的寿命。该研究以多能互补系统中的混流式水轮机为研究对象,在前期考虑工况权重系数的转轮多工况优化设计结果基础上,对比分析了优化前后转轮叶片的几何参数变化,不同负荷区的水轮机内部流动状态及压力脉动特征差异。研究结果表明:优化后叶片包角、安放角以及叶片长度均有所增加,叶片表面压力分布及转轮进出水边速度矩分布更加均匀,有助于改善水轮机低负荷区的空化性能、提高能量转换能力。转轮进出口安放角的增加很好地抑制了转轮进口背面脱流涡及出水边的脱流涡区,改善了尾水管的入流条件,使得尾水管涡带的强度和影响范围明显减小。叶片优化后,转轮内各频率的压力脉动幅值均有不同程度的降低,尾水管内压力脉动改善明显。尾水管内0.2fn(fn为转频)和14fn压力脉动在低负荷工况(OP1)幅值降幅分别为45%和40%,额定工况(OP4)尾水管内0.2fn压力脉动基本消除,14fn压力脉动幅值降幅为31%。...  相似文献   

10.
二阶斯托克斯非线性潮波对潮汐贯流式水轮机性能的影响   总被引:1,自引:1,他引:0  
双向贯流式水轮机在潮汐能开发中的应用广泛。在海洋波流条件影响下,潮汐能机组在反向运行过程中的水动力性能变化是潮汐能机组研发过程中需要考虑的重要问题。该文采用二阶斯托克斯非线性潮波对海洋潮波来流进行了模拟,建立了二阶斯托克斯非线性潮波边界下的潮汐贯流式水轮机性能分析模型并验证了模型的可靠性。以该模型为基础,采用CFD方法,对某一潮汐贯流式水轮机在反向运行时的内部流动进行数值仿真,重点研究了动态波流边界对贯流式水轮机反向运行时水力特性的影响。研究结果表明:1)考虑波流耦合作用时,潮波与坝体发生碰撞后损失了大部的动能,形成的反射波流,覆盖下一个波峰前的气体形成大气泡进入海洋内部;2)来流潮波与坝体壁面反射潮波的相互作用是形成潮汐贯流式水轮机取水口处夹气涡的原因,形成的夹气涡在液面下旋转前进流入内流场黏附于流道上侧,压缩流场过流面积,形成了一个低压低速的夹气涡流动带,从而改变内流场流动分布和贯流机组的特性;3)动态波流的作用使得潮汐贯流式水轮机转轮叶片上的受力呈现较大幅度波动,叶片受力的低频幅值会随着夹气涡的发展而逐渐增大。同时,在波流影响下机组出力的波动幅度达到3.86%,远高于无波流作用下的不足1%,从而导致电能质量下降。  相似文献   

11.
某电站混流式水轮机转轮叶片历年出现不同程度的裂纹情况,为了分析该转轮叶片裂纹产生的原因,该文首先采用流体动力学技术,对该水轮机机组在额定水头下、不同负荷的4个工况进行了全三维的非定常湍流数值模拟,分析对比了各个工况下转轮内部流场的变化和压力脉动情况,计算结果表明:在低负荷情况下转轮内部出现叶道涡,叶道涡的存在使得转轮内部压力脉动变大,从而引起机组运行不稳定;其次采用结构有限元技术对转轮在上述4个工况下进行了动应力分析,模拟结果显示:应力最大发生在转轮上冠和叶片出口连接处,且在低负荷下动应力最大,最大值可达到164.3 MPa,长期在低负荷工况下运行容易引起叶片疲劳;最后对转轮单个叶片进行了模态分析,从模态分析结果可知叶片固有频率远离各个水力激振频率,因此不会发生水力共振。该文通过计算流体动力学(computational fluid dynamics)的方法全面分析了叶片产生裂纹的原因,并提出了相应的裂纹控制对策,为机组的稳定运行提供了参考。  相似文献   

12.
水泵水轮机转轮叶片低压边相比其他部位更具有空蚀的危险性。首先基于低比转速混流式转轮设计程序,设计了3种具有不同厚度的叶片,厚度差异主要在叶片低压边位置;然后采用数值模拟方法对3种翼型转轮分别进行了3个不同出力的水轮机工况以及3个不同流量的水泵工况的全流道定常数值计算,对比分析了各计算工况下具有不同叶片低压边厚度的转轮的空化形态及流动特征;最后采用有限元方法对转轮叶片强度进行了校核。研究表明:3种叶片低压边厚度分布规律的转轮均满足强度要求。空化性能方面,水轮机42%出力工况下,翼型2转轮不发生空化;88%出力工况、100%出力工况和水泵大流量工况下,随着叶片低压边的厚度的增大,空化越剧烈;水泵小流量工况与设计工况下,转轮的空化程度并不因低压边厚度的增大而加剧,而是水泵设计工况下,低压边厚度相对最大的翼型3叶片头部绕流平顺,空化性能相对较好,其他2种翼型由于头部出现脱流和漩涡,出现严重空化。  相似文献   

13.
水泵水轮机转轮叶片低压边相比其他部位更具有空蚀的危险性。首先基于低比转速混流式转轮设计程序,设计了3个具有不同低压边轴面位置的叶片。然后采用数值模拟方法对3个转轮分别进行了3个不同出力的水轮机工况以及3个不同流量的水泵工况的全流道定常数值计算,对比分析了各计算工况下转轮的能量特性、流动特征及空化形态。研究表明,在一定范围内,叶片低压边轴面位置前移可以改善大流量水泵工况下转轮叶片进口的脱流情况,从而提高大流量水泵工况的扬程和空化性能。低压边轴面位置的后移,使得水轮机设计工况和满负荷工况的水力效率降低,但是改善了水轮机大流量工况的空化性能;并且叶片低压边轴面位置后移可以改善小流量工况下叶片进口的来流均匀性,从而提高小流量水泵工况的空化性能。相比而言,低压边在上冠型线位置的直径与转轮直径之比为0.4998的第2种低压边位置转轮在水轮机和水泵2种工况下都表现出比较好的空化性能,满足设计要求。  相似文献   

14.
混流式水轮机的三维湍流流场分析与性能预测   总被引:8,自引:6,他引:2  
用数值方法研究混流式水轮机各通流元件内部流场是优化其设计的重要手段。该文基于Navier-Stokes方程和k-ε紊流模型,采用贴体坐标和交错网格系统,用SIMPLEC算法对一模型混流式水轮机引水元件、转轮和尾水管进行了联合计算与转轮单流道计算,数值模拟了水轮机各通流元件内部三维湍流流场,预测了水轮机的能量性能和空化性能,并与水轮机模型试验结果进行了对比。该文的水轮机计算效率与实测效率非常接近,各工况最大相对误差为0.9%;计算的初生空化系数与实测临界空化系数之比为1.57~1.99,符合实际。研究结果表明,该文提出的多部件联合计算与转轮单流道计算相结合的方法,可节省计算资源且精度较高,并具有良好的工程适用性。  相似文献   

15.
贯流式水轮机在实际运行过程中受力不对称,这使得叶片容易出现疲劳损坏、裂纹等问题,为准确地揭示贯流式水轮机内部流动状态,分析水轮机振动及叶片疲劳损坏的内在原因,该研究在考虑上下游库区自由液面及水体重力的情况下对灯泡贯流式水轮机进行真机流动性能的数值研究,并采用流固耦合的方法对不同工况下转轮叶片进行应力应变分析。结果表明:受水体重力产生的静水压力影响,贯流式水轮机叶片旋转的过程中经历周期性的压力波动,且水头越低、转轮淹没深度越大,叶片表面所承受的压力波动幅值越大;叶片的形变量沿半径方向逐渐增大,叶片位于0°位置时,静水压力方向与叶片表面动水压力方向一致且相互叠加,使得叶片产生最大形变量,叶片处于180°位置时,静水压力推动叶片转动有助于缓解叶片发生形变;由于悬臂梁结构的叶片在轮缘处的应力可以通过形变量得到释放使得此处等效应力接近为0,随着半径的减小等效应力逐渐增大,叶片靠轮毂处受枢轴的约束而使得此处应力出现最大值;水头的增加导致转轮淹没深度减小,使叶片表面承受的静水压力减小,因此叶片上的最大形变量及最大等效应力均有所减小。研究结果对贯流式水轮机转轮叶片设计优化、运行维护具有理论指导意义。  相似文献   

16.
转轮下环间隙对混流式水轮机内部流动特性的影响   总被引:1,自引:1,他引:0  
水轮机转轮间隙内的泄漏涡、泄漏流等复杂的湍流易影响水轮机的性能与稳定性。为了分析下环间隙对混流式水轮机能量特性和内部流态的影响,该文基于N-S方程和SST湍流模型,考虑了0.6 Qd(Qd为设计流量工况)、0.8 Qd、Qd、1.2 Qd共4种流量工况,对5种下环间隙下的混流式水轮机模型机进行三维全流道数值计算。通过对比不同下环间隙方案对混流式水轮机效率与容积损失的影响,结合不同水轮机内部流场特征,分析下环间隙与水轮机性能的关系。计算结果表明:下环间隙由0.4 mm增大到1.3 mm,机组泄漏量增大,水轮机效率整体呈下降趋势。其中,当机组在小流量0.6 Qd工况运行时,间隙对水轮机能量特性影响最为明显,效率下降了4.1个百分点。当机组在小流量0.6 Qd与0.8 Qd工况运行时,下环间隙增大,间隙内部流场与尾水管内部流场呈现小幅度恶化;当机组在大流量1.2 Qd工况运行时,下环间隙增大,转轮叶片吸力面压力分布以及尾水管内部流场均得到改善。该研究可为混流式水轮机结构设计提供有效参考。  相似文献   

17.
为了研究双向贯流式水轮机反向工况效率低下的问题,该文以某带有后置导叶的双向贯流式机组为对象,针对不同形状和不同厚度的叶片尾部,分析了反向工况下叶片尾部对机组性能的影响。采用UG建模软件对机组进行几何建模,基于CFX软件,采用SST k-ω湍流模型对不同形状和厚度的叶片尾部的转轮进行了数值模拟。结果表明:反向工况下采用圆形尾部的叶片其机组效率为59.55%,高于矩形尾部的58.4%和弧形尾部的58.01%,说明反向工况下矩形尾部和弧形尾部的冲击损失较大。增加叶片尾部厚度对机组反向工况的效率提高较为明显,其效率最高能抬高到79%,但叶片尾部厚度增加到一定程度后效率不再增加,叶片尾部厚度的增加使得反向工况下叶片尾部最低压力值降低了1.2×106 Pa,对其反向工况下的空化性能有较大影响,且增加了正向工况运行是出现卡门涡的概率。研究成果为双向贯流式水轮机反向工况下叶片尾部形状的优化设计提供了经验参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号