首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
多能互补系统中新能源发电的不稳定性使得作为调能机组的水电机组频繁在水力效率低、振动剧烈的低负荷区运行,严重影响机组的寿命。该研究以多能互补系统中的混流式水轮机为研究对象,在前期考虑工况权重系数的转轮多工况优化设计结果基础上,对比分析了优化前后转轮叶片的几何参数变化,不同负荷区的水轮机内部流动状态及压力脉动特征差异。研究结果表明:优化后叶片包角、安放角以及叶片长度均有所增加,叶片表面压力分布及转轮进出水边速度矩分布更加均匀,有助于改善水轮机低负荷区的空化性能、提高能量转换能力。转轮进出口安放角的增加很好地抑制了转轮进口背面脱流涡及出水边的脱流涡区,改善了尾水管的入流条件,使得尾水管涡带的强度和影响范围明显减小。叶片优化后,转轮内各频率的压力脉动幅值均有不同程度的降低,尾水管内压力脉动改善明显。尾水管内0.2fn(fn为转频)和14fn压力脉动在低负荷工况(OP1)幅值降幅分别为45%和40%,额定工况(OP4)尾水管内0.2fn压力脉动基本消除,14fn压力脉动幅值降幅为31%。...  相似文献   

2.
混流式水轮机主轴中心孔补水对尾水管性能的影响   总被引:1,自引:1,他引:0  
混流式水轮机在低负荷工况下运行时,尾水管内出现旋转的偏心涡带,会引起强烈的压力脉动和振动,严重威胁厂房的安全。为了使机组稳定运行,该文提出了一种通过从上冠泄水锥引入高压补水的方法来降低尾水管的不稳定性。该文首先采用商业软件CFX16.0,对某电站混流式水轮机在低负荷工况下进行了可靠而准确的全三维非定常数值模拟,结果表明在该工况下尾水管内部存在明显的偏心涡带,并伴随着振幅较大的压力脉动,这与试验结果相吻合。其次,对该工况下不同补水流量进行了数值模拟计算,研究表明:尾水管内补高压水可以有效降低尾水管内部的流动损失,且随着补水量的增加而越小,但过大的补水量会引起叶片正背面压力的降低,影响水轮机的空化性能,故补水量的大小必须综合考虑;主轴中心孔高压补水可以增加转轮出口的轴向速度,从而改变涡带内速度场的分布,可有效消除回流现象,当补水流量过小时,抑制回流作用不明显;当补水量为进口流量1%时,尾水管内部压力脉动振幅变化不大,改善效果不明显;当补水量为进口流量3%时,尾水管内部涡带由双螺旋变成单螺旋,锥管段压力脉动振幅不减反增,不稳定性有所加剧;当补水量为进口流量5%时,尾水管内部压力脉动振幅从18.4%降低至1.63%,同时改变了压力脉动的主频,使其远离转轮主频,避免发生共振,提高了机组的稳定性。  相似文献   

3.
混流式水轮机部分负荷叶道空化涡不稳定特性已成为制约水电与其他可再生能源多能互补发展、扩大水轮机稳定运行范围急需研究的技术难题。该研究以HL702低水头混流式模型水轮机为研究对象,通过非稳态数值模拟技术及涡流可视化试验,对部分负荷工况下的叶道空化涡不稳定涡流演化及压力脉动特性展开研究。结果表明,叶道空化涡在水轮机转轮内为一个体积周期性变化的动态过程,其涡结构脉动主频为转轮转频的1.1倍。叶道空化涡诱发时,水轮机转轮叶片压力面和吸力面均捕捉到与涡结构频率相同的压力脉动信号。叶道空化涡体积的变化主要发生在转轮叶片背面出水边与下环交界附近,引起压力脉动幅值的局部放大。进一步分析发现,叶道空化涡发生工况下水轮机内部的瞬时压力脉动信号与空泡体积加速度成正比,表明涡流演化是引起压力脉动幅值上升的重要原因。研究进一步阐明了部分负荷工况叶道空化涡的演化特征,揭示了涡流诱发不稳定高振幅压力脉动的内在机制。  相似文献   

4.
某电站混流式水轮机转轮叶片历年出现不同程度的裂纹情况,为了分析该转轮叶片裂纹产生的原因,该文首先采用流体动力学技术,对该水轮机机组在额定水头下、不同负荷的4个工况进行了全三维的非定常湍流数值模拟,分析对比了各个工况下转轮内部流场的变化和压力脉动情况,计算结果表明:在低负荷情况下转轮内部出现叶道涡,叶道涡的存在使得转轮内部压力脉动变大,从而引起机组运行不稳定;其次采用结构有限元技术对转轮在上述4个工况下进行了动应力分析,模拟结果显示:应力最大发生在转轮上冠和叶片出口连接处,且在低负荷下动应力最大,最大值可达到164.3 MPa,长期在低负荷工况下运行容易引起叶片疲劳;最后对转轮单个叶片进行了模态分析,从模态分析结果可知叶片固有频率远离各个水力激振频率,因此不会发生水力共振。该文通过计算流体动力学(computational fluid dynamics)的方法全面分析了叶片产生裂纹的原因,并提出了相应的裂纹控制对策,为机组的稳定运行提供了参考。  相似文献   

5.
贯流式水轮机飞逸过渡过程瞬态特性CFX二次开发模拟   总被引:4,自引:4,他引:0  
当水轮发电机组处于飞逸状态时,水轮机内部会出现严重的不稳定现象,容易引起机组的振动。贯流式水轮机因为水头低、流量大、通道短等特点,其过渡过程与常规的立式水轮机有许多不同之处。基于此,该文通过CFX16.0和Fortran程序的二次开发建立了水轮机飞逸过程的数值计算方法,对贯流式水轮机的飞逸过程进行了数值模拟,获得了转速、流量、力矩、轴向力等外特性参数在飞逸过程中的变化历程以及水轮机内部流场的动态特性。结果表明:计算得到的最大飞逸转速为2 190 r/min与试验测得的结果较为接近,误差不超过2.5%,验证了该数值方法的可靠性;飞逸过程中其余外特性参数的变化规律均符合高比转速水轮机飞逸过程的流动规律;在飞逸过程中,由于转速和流量的增加使得水轮机转轮进口相对液流角降低,水流在叶片吸力面进水侧靠近叶缘处发生撞击形成高压,在叶片压力面进水侧叶缘处出现脱流产生负压,并随着转速的升高,高压区和低压区逐渐增大,转轮叶片受力变得极为不均匀容易引起疲劳破坏;同时,转速的增加使得转轮出口环量增加,在尾水管内部将会形成偏心的螺旋涡带,引起了强烈的低频压力脉动,振幅最大可达到试验水头的104%,不利于机组的安全稳定运行。  相似文献   

6.
混流式水轮机叶道涡流动特性研究   总被引:1,自引:1,他引:0  
叶道涡是混流式水轮机运行在偏工况下出现的一种典型的空化流动现象,其起源于两叶片之间而消失于转轮出口附近,对水轮机内部的压力及速度场有直接的影响。为了阐明叶道涡演化特征及其对水力性能的影响,该文基于SST k-ω湍流模型及Zwart空化模型对某一低水头混流式模型水轮机进行瞬态空化两相流动的数值模拟及试验研究。结果表明,叶道涡流动结构的数值模拟与试验观测结果基本一致。在叶道涡工况区,转轮内空泡体积呈周期性脉动,叶道涡频率为转频的90%。叶道涡沿叶片展向发展于轮毂面,主水流在离心力的作用下向下环方向偏移,迫使叶道涡向出水边方向移动,故涡束沿叶片出口边背面靠近轮缘处流出。转轮内有限空间限制及偏工况下负冲角的综合作用,是形成叶道涡的主要原因。压力脉动及其频谱分析表明,活动导叶与转轮之间的无叶区、转轮叶片以及尾水管内均捕捉到了叶道涡频率,表明叶道涡频率同时向上游及下游传播。叶道涡对尾水管内部流场有较大影响,表现为锥管段及肘管段中心处形成较大回流区。该研究为进一步深入理解复杂的叶道涡流动特性提供一定参考。  相似文献   

7.
C型及S型叶片的贯流式水轮机流场特性   总被引:2,自引:2,他引:0  
为了研究不同叶片进出口边形状及位置对贯流式水轮机内部的流动特性及机组能量特性所产生的影响,并为贯流式水轮机叶片的水力设计提供参考,该文基于某4叶片灯泡贯流式水轮机模型机,利用ANSYS-Bladegen对转轮叶片进行优化设计,并通过数值研究的方法对优化前(C 型叶片)和优化后(S 型叶片)的贯流式水轮机进行流场分析和性能评估,以揭示2种形式的叶片几何参数差异所引起的水轮机内流动特性及水轮机能量特性的差异。研究结果表明:S型叶片因其进出口边位置低于C型叶片,因此流道内速度矩的消耗位置较低,转轮出口环量分布规律也呈S型分布;C型叶片具有较大的叶栅稠密度及包角,叶片表面低压区较小,相反S型叶片叶栅稠密度及叶片包角较小,叶片正背面压差较大,因此转轮能量转换能力优于C型叶片,同时S型的出水边有效的减小了转轮出口的低压区,有助于改善尾水管内的流动特性;叶片进出水边对转轮内的水流具有导流作用,且流量越小,这种趋势越明显,S 型叶片进水边形状有将水流导向轮缘的趋势,水流在流道内的流量分配也呈近似 S型分配;S型叶片叶栅排挤作用减小,转轮内的水力损失、转轮出口环量损失及尾水管水力损失也明显小于C型叶片,因此其整体能量特性优于C型叶片。  相似文献   

8.
二阶斯托克斯非线性潮波对潮汐贯流式水轮机性能的影响   总被引:1,自引:1,他引:0  
双向贯流式水轮机在潮汐能开发中的应用广泛。在海洋波流条件影响下,潮汐能机组在反向运行过程中的水动力性能变化是潮汐能机组研发过程中需要考虑的重要问题。该文采用二阶斯托克斯非线性潮波对海洋潮波来流进行了模拟,建立了二阶斯托克斯非线性潮波边界下的潮汐贯流式水轮机性能分析模型并验证了模型的可靠性。以该模型为基础,采用CFD方法,对某一潮汐贯流式水轮机在反向运行时的内部流动进行数值仿真,重点研究了动态波流边界对贯流式水轮机反向运行时水力特性的影响。研究结果表明:1)考虑波流耦合作用时,潮波与坝体发生碰撞后损失了大部的动能,形成的反射波流,覆盖下一个波峰前的气体形成大气泡进入海洋内部;2)来流潮波与坝体壁面反射潮波的相互作用是形成潮汐贯流式水轮机取水口处夹气涡的原因,形成的夹气涡在液面下旋转前进流入内流场黏附于流道上侧,压缩流场过流面积,形成了一个低压低速的夹气涡流动带,从而改变内流场流动分布和贯流机组的特性;3)动态波流的作用使得潮汐贯流式水轮机转轮叶片上的受力呈现较大幅度波动,叶片受力的低频幅值会随着夹气涡的发展而逐渐增大。同时,在波流影响下机组出力的波动幅度达到3.86%,远高于无波流作用下的不足1%,从而导致电能质量下降。  相似文献   

9.
贯流式水轮机是农村小水电电网中的重要组成部分,其低水头、大流量的特点,易导致电站机组效率低下、出力降低。而贯流式水轮机运行中的最优运行问题很少引起学者关注,目前最优工况的研究仅仅局限于某点或线。该文从转轮水力损失的角度,理论上分析了影响贯流式水轮机效率的翼型阻力损失、端部损失与撞击损失,依据现场实际导叶与桨叶翼型,在定水头、定桨叶方式下,通过改变转轮进口水流角,对转轮进、出口速度三角形进行计算,从能量角度,进行工况优化,得到转轮10°工况下导叶在53.9°~58.8°的最优特性区域,效率可提高约3%~8%。利用数值仿真技术,对其工况做相应的数值仿真,并进行流场分析,在此基础上,进行真机试验,结果与理论分析相符,与数值仿真计算的误差小于2%,采用此方法对电站机组的全工况进行了计算,全工况范围内进行区域工况优化,得到转轮在7°~42°,导叶在0~78°的最优特性曲线,通过一段时间运行,数据显示机组的能量特性与稳定性效果比较理想。  相似文献   

10.
转轮下环间隙对混流式水轮机内部流动特性的影响   总被引:1,自引:1,他引:0  
水轮机转轮间隙内的泄漏涡、泄漏流等复杂的湍流易影响水轮机的性能与稳定性。为了分析下环间隙对混流式水轮机能量特性和内部流态的影响,该文基于N-S方程和SST湍流模型,考虑了0.6 Qd(Qd为设计流量工况)、0.8 Qd、Qd、1.2 Qd共4种流量工况,对5种下环间隙下的混流式水轮机模型机进行三维全流道数值计算。通过对比不同下环间隙方案对混流式水轮机效率与容积损失的影响,结合不同水轮机内部流场特征,分析下环间隙与水轮机性能的关系。计算结果表明:下环间隙由0.4 mm增大到1.3 mm,机组泄漏量增大,水轮机效率整体呈下降趋势。其中,当机组在小流量0.6 Qd工况运行时,间隙对水轮机能量特性影响最为明显,效率下降了4.1个百分点。当机组在小流量0.6 Qd与0.8 Qd工况运行时,下环间隙增大,间隙内部流场与尾水管内部流场呈现小幅度恶化;当机组在大流量1.2 Qd工况运行时,下环间隙增大,转轮叶片吸力面压力分布以及尾水管内部流场均得到改善。该研究可为混流式水轮机结构设计提供有效参考。  相似文献   

11.
抽蓄机组在低水头起动时易进入其全特性曲线的反S不稳定区,从而导致机组并网失败,严重影响机组的安全稳定运行。其中机组内部复杂流动演变导致的剧烈压力脉动是影响机组动态特性的关键。该研究基于计算流体动力学(computational fluid dynamics,CFD)数值模拟方法对水泵水轮机低水头起动过程进行研究,重点分析了导叶与尾水管区域的压力脉动特性及产生原因。结果表明:机组起动过程中,无叶区时均压力幅值是固定导叶与活动导叶间的6倍,且时均压力幅值在无叶区沿周向分布不均。动静干涉主导了无叶区时均压力和脉动压力的变化,而在上游固定导叶与活动导叶间的动静干涉作用主要影响的是压力脉动幅值。尾水管直锥段压力脉动在机组起动过程不同阶段表现出不同的波动特征,PID(proportion integration differentiation)调节阶段压力波动较为明显。通过内部流动对比发现,活动导叶开启会引起无叶区水流速度的分布变化和波动,活动导叶小开度下转轮进口和无叶区存在明显的大尺度旋涡,这些和动静干涉联合作用是导致无叶区时均压力和脉动压力波动幅值高的原因。尾水管涡带在起动过程经历了从边条状涡...  相似文献   

12.
空化对轴流式水轮机尾水管压力脉动和转轮振动的影响   总被引:1,自引:1,他引:0  
研究空化对轴流式水轮机尾水管压力脉动和转轮振动的影响规律,可为改善轴流式水轮机运行稳定性提供理论依据。该研究构建了包含高速摄像、激光测振仪(Laser Doppler Vibrometer,LDV)及高频压力脉动传感器的同步测试系统,并通过该系统获得了变空化系数下轴流式水轮机压力脉动数据、转轮径向振动数据及空化图像资料。综合变分模态分解(Variational Mode Decomposition,VMD)、频谱分析以及互相关分析法,揭示了空化对轴流式转轮振动和尾水管压力脉动的影响规律。结果表明:进入空化发展阶段后,尾水管锥管上的压力脉动幅值与转轮径向振动幅值会随空化程度的增加而提高;针对该研究的轴流式水轮机模型,转轮完全空化后,压力脉动峰峰值和转轮径向振动速度峰峰值是无空化时的9.16和10.12倍;空化所导致的转轮径向振动速度信号的中高频幅值提升局限于12.0~200.0倍转频的频率范围内;空化程度的增加还会导致压力脉动出现高频能量局部极值迁移现象,增加了其诱发机组共振的可能性。该研究对提升农业水利工程中轴流式水电站的经济性和运行稳定性有重要意义。  相似文献   

13.
水泵水轮机转轮叶片低压边相比其他部位更具有空蚀的危险性。首先基于低比转速混流式转轮设计程序,设计了3种具有不同厚度的叶片,厚度差异主要在叶片低压边位置;然后采用数值模拟方法对3种翼型转轮分别进行了3个不同出力的水轮机工况以及3个不同流量的水泵工况的全流道定常数值计算,对比分析了各计算工况下具有不同叶片低压边厚度的转轮的空化形态及流动特征;最后采用有限元方法对转轮叶片强度进行了校核。研究表明:3种叶片低压边厚度分布规律的转轮均满足强度要求。空化性能方面,水轮机42%出力工况下,翼型2转轮不发生空化;88%出力工况、100%出力工况和水泵大流量工况下,随着叶片低压边的厚度的增大,空化越剧烈;水泵小流量工况与设计工况下,转轮的空化程度并不因低压边厚度的增大而加剧,而是水泵设计工况下,低压边厚度相对最大的翼型3叶片头部绕流平顺,空化性能相对较好,其他2种翼型由于头部出现脱流和漩涡,出现严重空化。  相似文献   

14.
为了分析转轮间隙流动对混流式水轮机效率预测的影响,该文采用CFD数值模拟方法对含有转轮间隙的混流式水轮机内部流动特性进行研究,定量分析了转轮圆盘效率损失,并将CFD仿真结果和模型试验结果进行了对比。研究表明:考虑了转轮圆盘损失后,在最优单位转速附近CFD计算得到的水轮机效率和模型试验结果吻合良好。当偏离最优工况点较远时,由于流场中存在脱流和涡流,CFD计算得到的效率较试验值偏低。转轮下环表面造成的圆盘效率损失远高于上冠表面,且转轮内外圆盘损失基本相当。在同一水头下,通过转轮间隙的泄漏流量基本为常数。此外,"动静干涉"现象对圆盘损失的影响基本可以忽略不计。该研究结果可为混流式水轮机圆盘损失的预估提供有效的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号