首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
More and more linear alkylbenzene sulfonate (LAS) has contaminated the water and soil via pollution discharge, making it important to identify the ecological behavior and toxicity of LAS so as to carry out measures that will reduce its negative effects on the ecosystem. The ecological behavior of LAS, including degradation, migration, and plant uptake in both soil-paddy rice and soil-soybean systems, was studied. Reduction of LAS in pot and field plots followed the first order reaction kinetics with degradation half-lives of 35--50 days with LAS decreasing to very low concentrations after a season of crop growth. Strong migration ability for LAS was found and the breakthrough time in a 1.5 m soil monolith was significantly shortened to 23 days by preferential flow. Leachate volumes of soil-paddy and soil-soybean systems at preferential breakthrough were much different, while the leachate volumes at equilibrium governed by soil adsorption/desorption processes were very similar. Significant uptake of LAS in both paddy rice and soybeans was observed in pot and field experiments (P < 0.05). In aquatic culture, 20 μg mL-1 and above of LAS significantly inhibited the growth of paddy seedlings (P < 0.05). The critical concentration for LAS in soil inhibiting the growth and yield of paddy was 160 μg g-1; when higher, there was a strong negative influence, with decreases in height, spike length, and production; when lower than 80 μg g-1, paddy growth was stimulated. There was little effect of LAS on soybeans.  相似文献   

2.
不同N水平紫色土上不同水稻品种吸收N、K的动力学   总被引:1,自引:0,他引:1  
A pot experiment was conducted to study the effect of nitrogen fertilizer on nitrogen and potassium uptake by four rice cultivars. Results showed that the quadratic parabola relationship between biomass of rice and nitrogen levels was observed, with the maximum biomass at the nitrogen level of 150 mg kg-1. The rates of nitrogen and potassium uptake by the four rice cultivars depended on growth stage and rice cultivar with the maximum rate of N in Shanyou-63 and maximum rate of K in Kaiyou-5 (hybrid rice), respectively. The kinetics of nitrogen and potasssium uptake by rice plant could be quantitatively described by the following equations: y = a + blogt, y = ab + t1/2 and y = ae-bt. The b value in the equations was correlated significantly to the rates of nitrogen and potassium uptake (NR and KR, r = 0.901**~0.990**), suggesting that the b value could be used to distinguish the index of nitrogen and potassium uptake capacity of rice. The maximum values of nitrogen uptake by plant (b value) and apparent recovery of fertilizer nitrogen were observed in Shanyou-63, and the minimum value in Eryou-6078. However, the capacity of potassium uptake (b value) by Kaiyou-5 ranked first and that by Shanyou-63 second. There was a significant linear relationship between nitrogen level and nitrogen uptake by rice, but a quadratic parabola relationship was found between nitrogen level and patassium uptake by rice. The application of nitrogen fertilizer decreased the ratios of potassium to nitrogen uptake by rice plant. The greatest reduction in the ratio was observed at high nitrogen level, and the least reduction was found in Kaiyou-5 and Shanyou-63 due to their greater ability to absorb potassium.  相似文献   

3.
The pot experiments were conducted in the artificial climate laboratories to determine the relative importance of mass flow and diffusion in supplying Fe, Mn, Cu and Zn to wheat, soybean and maize plants growing in loessal soil and lou soil. It was found that the calculated relative contribution of mass flow of iron, manganese, copper and zinc to plant uptake varied from 5% to more than 100%, depending on the crop species and soil types as well as plant growth stage, soil moisture, atmosphere humidity, etc. The results also showed that the major transportation mechanisms of these micronutrients in soil-root system varied with the crop and its growth, climate and soil, significantly. In general, mass flow was more important for Cu and Zn and diffusion was more significant for Fe and Mn at the seedling stage.  相似文献   

4.
根迹土壤根诱导的化学变化对植物吸收重金属的影响   总被引:4,自引:0,他引:4  
K. R. KIM  G. OWENS  R. NAIDU 《土壤圈》2010,20(4):494-504
It is increasingly recognized that metal bioavailability is a better indicator of the potential for phytoremediation than the total metal concentration in soils; therefore, an understanding of the inffuence of phytoremediation plants on metal dynamics at the soil-root interface is increasingly vital for the successful implementation of this remediation technique. In this study, we investigated the heavy metal and soil solution chemical changes at field moisture, after growth of either Indian mustard (Brassica juncea) or sunffower (Helianthus annuus L.), in long-term contaminated soils and the subsequent metal uptake by the selected plants. In addition, the fractions of free metal ions in soil solution were determined using the Donnan membrane technique. After plant growth soil solution pH increased by 0.2-1.4 units and dissolved organic carbon (DOC) increased by 1-99 mg L-1 in all soils examined. Soluble Cd and Zn decreased after Indian mustard growth in all soils examined, and this was attributed to increases in soil solution pH (by 0.9 units) after plant growth. Concentrations of soluble Cu and Pb decreased in acidic soils but increased in alkaline soils. This discrepancy was likely due to a competitive effect between plant-induced pH and DOC changes on the magnitude of metal solubility. The fractions of free Cd and Zn ranged from 7.2% to 32% and 6.4% to 73%, respectively, and they generally decreased as pH and DOC increased after plant growth. Metal uptake by plants was dependant on the soil solution metal concentration, which was governed by changes in pH and DOC induced by plant exudates, rather than on the total metal concentrations. Although plant uptake also varied with metal and soil types, overall soluble metal concentrations in the rhizosphere were mainly inffuenced by root-induced changes in pH and DOC which subsequently affected the metal uptake by plants.  相似文献   

5.
Pb-Zn交互作用对红壤微生物生物量的影响   总被引:1,自引:0,他引:1  
A laboratory incubation experiment was conducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil. Treatments included the application of lead at six different levels i. e., 0 (background), 100, 200, 300, 450 and 600 g g-1 soil along with each of the four levels of zinc (0, 50, 150 or 250 g g-1 soil). Application of lead or zinc alone to soil significantly (P < 0. 001) affected the soil microbial biomass. The microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorus (Pmic) decreased sharply in soils contaminated with lead or zinc. Combined application of lead and zinc resulted in a greater biocidal effect on soil microbial biomass, which was significantly higher (P < 0. 001) than that when either lead or zinc was applied alone. Consistent increase in the biomass C: N and decline in the biomass C:P ratios were also observed with the increased metal (Pb and Zn) toxicity in the soil.  相似文献   

6.
A pot experiment was conducted to evaluate the effects of phosphorus fertilizer in inhibiting the copper toxicity to maize(Zea mays L.) in neutral purple soil. Results indicated that the growth of the shoot and roots of maize plant was obviously reduced by copper and the height and biomass were significantly negatively correlated to the application levels of copper (r = -0.899**~-0.994**) at no P and low P (100 mg kg-1). However, the maize biomass was relatively increased and the high Cu (100 and 200 mg kg-1) induced toxicity of maize was greatly alleviated in all treatments with medium P (300 mg kg-1 ) and high P (500 mg kg-1). To maintain the normal growth of maize plant (≥3.68 g pot-1), the critical application rates of phosphorus fertilizer should be 160, 210, 300 and 500 mg P kg-1 at 10, 50, 100 and 200 mg Cu kg-1 levels of the soil, respectively. The increases in polyphenol oxidase and catalase activities in maize leaf and dehydrogenase activity in roots by phosphorus fertilizer were in the order of medium P>high P>low P>no P. Activities of polyphenol oxidase and catalase were significantly positively correlated to the application levels of copper (r =0.892**~0.924**), whereas that of dehydrogenase was just reverse (r = -0.966**) at no P. Medium and high P repressed the influence of copper on activities of three enzymes. Phosphorus fertilizer reduced the copper concentrations of maize roots and leaf and the change ranges of the P/Cu ratio of maize roots and the P/Cu, N/Cu and K/Cu ratios of maize leaf. The three ratios of maize leaf were 256**71.5, 2643**839 and 1133**440 at normal growth of maize plant, respectively. Soil available Cu could be markedly cut down by application of phosphorus fertilizer, especiallly at high phosphorus level.  相似文献   

7.
淹水稻田氮的损失   总被引:29,自引:3,他引:29  
A field microplot experiment was conducted during the tillering stage of paddy rice to investigate nitrogen(N) Iosses from flooded rice fields following fertilizer application. After application of ammonium bicarbonate, most of nitrogen in the flood water was present as NH4-N and its concentration varied widely with time. Concentrations of both NO3-N and NO2-N in the floodwater were low due to the weakened nitrification. Under flooded anaerobic reducing conditions, soil solution concentrations of NO3-N and NH4-N were nothigh, ranging from 0.6 mg L-1 to 4.8 mg L-1, and decreased with soil depth. However, the ground water wasstill contaminated with NO3-N and NH4-N. Rainfall simulation tests showed that the N losses via runoff inrice fields were closely related to the time intervals between fertilizer applications and rainfall events. Whena large rain fell for a short period after fertilizer application, the N losses via runoff could be large, which could have a considerable effect on surface water quality. Both irrigation and N fertilizer application must be controlled and managed with great care to minimize N losses via runoff from agricultural land.  相似文献   

8.
Q. ZHU  H. S. LIN 《土壤圈》2010,20(5):594-606
The accuracy between ordinary kriging and regression kriging was compared based on the combined consideration of sample size, spatial structure, and auxiliary variables (terrain indices and electromagnetic induction surveys) for a variety of soil properties in two contrasting landscapes (agricultural vs. forested). When spatial structure could not be well captured by point-based observations (e. g., when the ratio of sample spacing over correlation range was > 0.5), or when a strong relationship existed between target soil properties and auxiliary variables (e. g., their R2 was > 0.6), regression kriging (RK) was more accurate for interpolating soil properties in both landscapes studied. Otherwise, ordinary kriging (OK) was better. Soil depth and wetness condition did not appear to affect the selection of kriging for soil moisture interpolation, because they did not significantly change the ratio of sample spacing over correlation range and the relationship with the auxiliary variables. Because of a smaller ratio of elevation change over total study area (E/A = 1.2) and multiple parent materials in the agricultural land, OK was generally more accurate in that landscape. In contrast, a larger E/A ratio of 6.8 and a single parent material led to RK being preferable in the steep-sloped forested catchment. The results from this study can be useful for selecting kriging for various soil properties and landscapes.  相似文献   

9.
钙盐诱导下土壤锰和铁的释放及其对胡椒的生物有效性   总被引:9,自引:7,他引:9  
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P< 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.  相似文献   

10.
硝态氮促进水稻生长和氮素吸收的生理机制   总被引:2,自引:0,他引:2  
Rice is being increasingly cultivated in intermittently irrigated regious and also in aerobic soil in which Nitrate (NO3-) plays important role in nutrition of plant. However, there is no information regarding the influence of nitrate on the overall growth and uptake of nitrogen (N) in rice plant. Solution culture experiments were carried out to study the effects of NO3- on the plant growth, uptake of N, and uptake kinetics of NH4+ in four typical rice (Oryza sativa L.) cultivars (conveutioual indica, conventional japonica, hybrid indica, and hybrid japonica), and on plasma membrane potential in roots of two conventional rice cultivars (indica and japonica) at the seedling stage. The results obtained indicated that a ratio of 50/50 NH4+-N/NO3--N increased the average biomass of rice shoots and roots by 20% when compared with that of 100/0 NH4+-N/NO3--N. In case of the 50/50 ratio, as compared with the 100/0 ratio, total N accumulated in shoots and roots of rice increased on an average by 42% and 57%, respectively. Conventional indica responds to NO3- more than any other cultivars that were tested. The NO3- supply increased the maximum uptake rate (Vmax) of NH4+ by rice but did not show any effect on the apparent Michaelis-Menten constant (Km) value, with the average value of Vmax for NH4+ among the four cultivars being increased by 31.5% in comparison with those in the absence of NO3-. This suggested that NO3- significantly increased the numbers of the ammonium transporters. However, the lack of effect on the Km value also suggested that the presence of NO3- had no effect on the affinity of the transporters for NH4+. The plasma membrane potential in the roots of conventional indica and japonica were greatly increased by the addition of NO3-, suggesting that NO3- could improve the uptake of N by roots of the rice plant. In conclusion, the mechanisms by which NO3- enhances the growth and N uptake of rice plant was found by the increased value of Vmax of NH4+ and increased plasma membrane potential. Thus promotion of nitrification in paddy soil is of great significance for improving the production of rice.  相似文献   

11.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

12.
旱改水对水稻幼苗生长的影响及秸秆的改良作用   总被引:3,自引:0,他引:3  
本研究以江汉平原旱改水为研究背景,采用土壤盆栽试验和室内淹水培养相结合的方法,以多年水稻土为对照,研究了多年棉田土旱改水及添加秸秆(9 g·kg-1)对水稻幼苗生长和矿质元素吸收的影响以及土壤氧化还原电位和有效态铁、锰、铜、锌含量变化,为旱改水水稻的种植提供参考。结果表明,棉田土旱改水后,水稻幼苗生长缓慢并出现失绿黄化症状,其地上部干重和叶绿素含量仅分别约为水稻土处理的30%和20%。旱改水处理水稻植株Fe含量显著低于、而Cu和Zn含量则显著高于水稻土处理。棉田土旱改水土壤氧化还原电位(Eh)显著高于水稻土;淹水处理10 d,土壤DTPA-Fe含量仅为水稻土的7%左右,而DTPA-Cu和DTPA-Zn含量则分别是水稻土的1.4~2.5倍和1.6~1.8倍。随着淹水时间的延长,棉田土旱改水土壤有效态铁含量逐渐增加,有效态锰、铜和锌含量呈先升高后降低趋势;到淹水处理的第28 d,棉田土旱改水土壤有效态铁、锰、铜和锌含量与水稻土之间的差异逐渐缩小。Fe不足及Cu过量可能是导致旱改水水稻幼苗生长缓慢、失绿黄化的主要原因。旱改水条件下添加秸秆可以降低土壤的Eh值,提高土壤DTPA-Fe含量及降低土壤DTPA-Cu和DTPA-Zn含量,显著提高旱改水初期水稻幼苗叶绿素含量,但对水稻生物量无显著影响。添加秸秆并不能完全消除旱改水对水稻幼苗生长的抑制作用。  相似文献   

13.
太湖地区水稻土的物理特性与少免耕法的关系   总被引:3,自引:3,他引:3  
赵誠斋 《土壤学报》1989,26(2):101-108
本文从土壤物理特性和作物生长的关系探讨了耕作的要求.土壤水分能量特性可被机械扰动改变,这是导致土壤粘闭的重要原因.水稻土的含水量和有效水均以表土高,而下层低,含水量和容重成线性负相关(n=62,r=-0.909**).土壤扰动可提高持水量,长年免耕在干旱年份可能会出现水分不足问题.土壤含水量、气容量和机械强度三者的变化相互联系.由三个因素决定的小麦生长最佳范围是在水分吸力0.02-0.5巴内,而田间持水量大于塑性限,所以秋季耕作必然导致土壤粘闭.免耕土壤的容重一般在1-1.25g/cm3之间,是稻麦生长的较佳环境,所以水稻土本身存在适合稻麦免耕生产的条件.根据水稻和三麦分别52和23组次对比试验,水稻免耕增产19斤/亩,三麦49斤/亩,均达到极显著水平(p=0.01).平田地区连续三年免耕土壤不恶化,囊水型土壤第二年开始有变差趋势,但产量不减低.免耕有保护土壤结构的作用,但不利于结构发展.  相似文献   

14.
氮肥对稻田土壤反硝化细菌群落结构和丰度的影响   总被引:6,自引:1,他引:5       下载免费PDF全文
以氮肥田间定位试验为研究对象,利用PCR-DGGE(聚合酶链反应变性梯度凝胶电泳)和荧光定量PCR(real-time PCR)技术,通过对反硝化细菌nirS基因的检测,分析了定位试验第2年稻田反硝化细菌群落结构和丰度的变化。DGGE图谱及依据其条带位置和亮度数字化数值进行的主成分分析(PCA)结果均显示:在氮肥定位试验第2年,与不施肥对照(CK)比较,在水稻各个生育期(分蘖期、齐穗期和成熟期)内,施用氮肥[150kg(N)·hm-2]的稻田根层土或表土中的反硝化细菌群落结构均无明显变化;且稻田根层土或表土中的反硝化细菌群落结构在水稻各个生育期间也均无明显差异。荧光定量PCR结果显示,在水稻生长发育过程中,施用氮肥的稻田根层土或表土中的反硝化细菌nirS基因拷贝数始终显著(P<0.05)高于其对应的不施肥对照。此外,无论施用氮肥与否,根层土中的反硝化细菌nirS基因拷贝数在水稻成熟期时都会显著(P<0.05)降低;但表土中的nirS基因拷贝数在水稻各生育期间无明显变化;且水稻成熟期时施用氮肥和不施肥的稻田表土中nirS基因拷贝数都显著(P<0.05)高于根层土。同时,与对照比较施用氮肥可促进水稻增产44%。研究表明,短期定位试验中施用氮肥能够显著提高稻田土壤反硝化细菌的丰度,但对其群落结构没有明显影响。  相似文献   

15.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

16.
A pot experiment with 38 commonly cultivated rice cultivars from the Yangtze River Delta was conducted in a greenhouse to study the effect of mercury (Hg) contamination of a paddy soil (4.7 mg Hg [kg soil]–1) on crop growth and Hg accumulation in the grains. Mercury contamination differentially affected growth, grain yield, and Hg accumulation in brown rice of the tested cultivars. The average Hg concentration in the grains was significantly higher (p < 0.01) when plants were grown in the Hg‐contaminated compared to the control soil. Averaged over cultivars, the Hg concentration in brown rice exceeded the maximum permissible limit of 20 μg Hg kg–1. Increasing Hg concentrations were associated with grain‐yield declines up to 70%. This yield decline was mainly due to a reduction in the number of panicles. Japonica cultivars tended to be generally less affected by Hg than indica cultivars. The two japonica cultivars Jiahua and Chunjiang 026 showed both low Hg concentrations and no Hg‐induced grain‐yield reduction. These cultivars may be preferred candidates for cultivation in Hg‐contaminated soils or for studies on possible Hg‐exclusion mechanisms.  相似文献   

17.
A 2‐year field experiment and a pot experiment were carried out to compare Mn uptake, tillering, and plant growth of lowland rice grown under different soil water conditions in the ground‐cover rice‐production system (GCRPS) in Beijing, North China. The field experiment was conducted in 2001 and 2002, including two treatments: lowland‐rice variety (Oryza sativa L. spp. japonica) grown under thin (14 μm) plastic‐film soil cover (GCRPSplastic) at 80%–90% water‐holding capacity (WHC) and traditional lowland rice (paddy control) grown with 3 cm standing‐water table. The pot experiment was conducted in a greenhouse with four treatments: (1) traditional lowland rice: paddy control; (2) GCRPS, water‐saturated soil: GCRPSsaturated; (3) GCRPS at 90% water‐holding capacity (WHC): GCRPS90%WHC; and (4) GCRPS at 70% WHC: GCRPS70%WHC. Results of the field experiment showed that dry‐matter production, number of tillers, as well as N and Mn concentrations in rice shoots of GCRPS were significantly lower than in paddy control, while there was no significant difference in shoot Fe, Cu, Zn, and P concentration and nematode populations. In the pot experiment, shoot Mn concentration significantly decreased with decreasing soil water content, while soil redox potential increased. Shoot–dry matter production and tiller number of GCRPSsaturated were significantly higher than in other treatments. Significant correlations were observed between the shoot Mn concentration and tiller number at maximum tillering stage in the field and pot experiment, respectively. We therefore conclude that the limitation of Mn acquisition might contribute to the growth and yield reduction of lowland rice grown in GCRPS. The experiment provides evidence that GCRPSplastic combined with nearly water‐saturated soil conditions helps saving water and achieving optimum crop development without visual or latent Mn deficiency as observed under more aerobic conditions.  相似文献   

18.
盆栽和田间条件下土壤15N标记肥料氮的转化   总被引:14,自引:2,他引:14  
程励励  文启孝  李洪 《土壤学报》1989,26(2):124-130
利用15N在盆栽条件下研究了铵的矿物固定作用对肥料氮在三种土壤中转化的影响.结果表明,红壤性水稻土不固定肥料铵,但在白土和夹沙土中,56-77%的肥料氮被土壤矿物所固定,这些“新固定”的固定态铵的有效性很高,其中90%以上在30-50天内即被水稻所吸收,或者为微生物所利用转变为生物固定态氮.生物固定态氮对当季作物的有效性远较“新固定”的固定态铵的低.田间微区试验的结果还表明,甚至第二、三季作物吸收的残留肥料氮中,20-86%的氮也系来自固定态铵.作者认为,对具有较强固铵能力的土壤来说,只有了解铵的矿物固定作用,才能正确了解肥料氮的其它转化过程.  相似文献   

19.
Fe2+对水稻生长及土壤微生物活性的影响   总被引:3,自引:1,他引:2  
通过盆栽试验,模拟冷浸田土壤亚铁毒害,研究了土壤-水稻-亚铁-微生物相互作用的体系中,外加Fe2+ 不同处理水平 (0、 100、 200、 400、 800和1600 mg/kg) 对水稻苗期和分蘖期相关生理指标、 土壤微生物活性及其生态特征的影响。结果表明, 在含一定亚铁本底(207.77 mg/kg)的正常稻田土壤中,外源性Fe2+的加入将逐步抑制水稻生长、 降低土壤微生物活性。外源Fe2+浓度达100 mg/kg后,水稻的株高、 干物质积累量显著降低; 水稻叶片生理指标叶绿素含量(SPAD值)、 脯氨酸含量、 抗氧化酶系统活性则显著增加,表明外源Fe2+浓度100 mg/kg 是本研究条件下外源Fe2+ 对水稻生长产生显著毒害影响的临界点; 同时随外源Fe2+浓度的增加, 土壤微生物活性指标土壤微生物量碳、 微生物三大基础菌系总量(细菌、 真菌、 放线菌)、 功能菌系总量(氨化细菌、 固氮菌、 纤维分解菌)、 铁还原菌总量总体是先快速下降,后逐渐平稳降低。 半效应浓度EC50分析表明,外源Fe2+浓度100 mg/kg 为多数土壤微生物活性指标(微生物基础菌系总量、 功能菌系总量、 铁还原菌)EC50变化的临界值; 体系中土壤微生物活性指标和水稻生长指标的变化存在显著的相关性, 表明供试土壤亚铁对水稻生长的影响是亚铁对土壤-植物-土壤微生物系统同步影响的结果。综上结果可知,外源Fe2+浓度100 mg/kg为导致供试土壤中水稻生长及土壤微生物活性受到显著负效应的临界值,进而推知,本研究所用土壤对水稻生长和微生物活性的亚铁毒胁迫临界浓度约为300 mg/kg(含本底), Fe2+含量超出该浓度时,需采取合理的农艺措施控制其负效应。  相似文献   

20.
很多实验早已证明[3]在田间栽培条件下,一季水稻所吸取的氮素营养物质多数来自土壤.为此土壤供氮性能是否适应和协调水稻良好生长发育的要求,这对水稻能否获得高产稳产有密切联系.本文初步探索了几种不同类型稻田土壤供氮性能的一些基本情况,目的是为进一步研究水稻高产稳产所要求的土壤供氮特性,提供必要的基础资料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号