首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genotypic variation in grain cadmium concentration of lowland rice   总被引:6,自引:0,他引:6  
Cadmium (Cd) contamination of paddy rice soils is commonly observed in the Yangtse River Delta, China. Large Cd uptake by rice plants and its translocation into the grains can entail human‐health risks. Genotypic variations in Cd uptake and a differential Cd partitioning into grains will be the basis for developing a rice screening or breeding tool for low grain Cd. A field experiment, conducted at the experimental farm of Jiaxing, Zhejiang province from 2002 to 2004, compared 38 rice genotypes of different types (indica vs. japonica) collected from the Yangtse River Delta. The results showed large differences in Cd concentrations in straw, brown rice, and grain chaff among the rice genotypes grown on Cd‐contaminated soil. Concentrations in brown rice ranged from 0.06 to 0.99 mg Cd kg–1. The total Cd uptake in brown rice varied between 0.96 and 28.58 μg plant1. In general, indica‐type cultivars accumulated significantly more Cd than the japonica‐type cultivars. The Cd concentration in straw was highly correlated with that in brown rice. While significant differences in the Cd‐partitioning ratio (% share of total Cd uptake found in brown rice) among rice genotypes were observed, these were not correlated with Cd concentration of brown rice. This indicates that the Cd accumulation in rice grains appears to be governed mainly by the Cd uptake by the plant and probably not by differential Cd partitioning. The large genotypic variation suggests the possibility to lower the Cd content of rice by genotype selection. The development of such breeding tools should focus on low Cd uptake rather than Cd partitioning between straw and grain.  相似文献   

2.

Purpose

Water management affects the bioavailability of cadmium (Cd) and arsenic (As) in the soil and hence their accumulation in rice grains and grain yields. However, Cd and As show opposite responses to soil water content, but information, particularly on irrigation, is missing on a field scale. The purpose of the present study was therefore to find a water management regime that can lower accumulation of both Cd and As in grain without yield loss.

Materials and methods

Two rice (Oryza sativa L.) cultivars, A16 and A159, with different grain Cd accumulation capacities were employed in field plot experiments with four water management regimes comprising aerobic, intermittent, conventional practice and flooded. The dynamics of Cd and As bioavailability in the soil and Cd and As concentrations in roots, straw and grains were determined at the early tillering, full tillering, panicle initiation, filling and maturity stages of crop growth.

Results and discussion

The lower water content regimes (aerobic and intermittent) mostly led to higher soil HCl-extractable Cd than the higher soil water content regimes (conventional and flooded). HCl-extractable As in contrast was favoured by the higher soil water content treatments. Conventional and flooded irrigation accordingly gave higher plant As concentrations but lower Cd compared to aerobic and intermittent irrigation. Cd concentrations in roots and straw of both varieties increased with growth stage, especially in aerobic and intermittent regimes, while As concentrations in plants showed little change or a slight decrease. As the water irrigation volume increased from aerobic to flooded, brown rice Cd decreased from 1.15 to 0.02 mg?kg?1 in cultivar A16 and from 1.60 to 0.05 mg?kg?1 in cultivar A159, whereas brown rice As increased. Aerobic and flooded treatments produced approximately 10–20 % lower grain yields than intermittent and conventional treatments. Cultivars with low Cd accumulation capacity show higher brown rice grain As than those with high Cd uptake capacity.

Conclusions

Of the four water management regimes, the conventional irrigation method (flooding maintained until full tillering followed by intermittent irrigation) ensured high yield with low Cd and As in the brown rice and so remains the recommended irrigation regime.  相似文献   

3.
Poultry litter is widely used as a fertilizer for lowland rice in Taiwan and China. However, the organic‐arsenic compound roxarsone (additive of poultry feed) in poultry litter can be absorbed by the plants and the resulting arsenic (As) contamination may pose a serious threat to human health. This study used various amounts of poultry litter contaminated with roxarsone in pot experiments to evaluate the effect of roxarsone on rice agronomic parameters and the bioaccumulation of total and inorganic As in rice‐plant tissues. Rice‐grain yield decreased significantly with increasing As content of the soil, and the critical threshold that killed rice was 200 mg roxarsone (kg soil)–1. The As concentrations in root, straw, leaf, husk, and grain increased with increasing soil As (p < 1%). At 100 mg roxarsone per kg of soil, the As concentration in the rice grain exceeded the statutory permissible limit of 1.0 mg As (kg dry weight)–1 and at 25 mg roxarsone (kg soil)–1, the inorganic As concentrations in grains exceeded the statutory limit of 0.15 mg of inorganic As kg–1 in China. For all treatments, the As concentrations in various plant tissues at maturity follow the order: root > stem > leaf > husk > grain. Arsenite was the predominant species in root, straw, and grain, while arsenate was the predominant species in leaf and husk. No significant difference existed between the amounts of arsenite and arsenate when various amounts of poultry litter were applied. This result illustrates that large amounts of added roxarsone are not only toxic to rice but also accumulate in grains in the inorganic As forms, potentially posing a threat to human health via the food chain.  相似文献   

4.
Agricultural soil contamination by cadmium (Cd) is becoming one of the most serious environmental issues and public concerns. In this study, factorial arrangements of treatments were designed to explore the effects of two soil amendments, sodium sulfide-biofuel ash (SSBA) and lime (0.1%), and three foliar applications, silicon (Si, 2.5 mmol L-1), selenium (Se, 40 mg L-1), and their combination (SS), on Cd reduction in rice (Oryza sativa L.) in a pot experiment, which were then verified in a field experiment. Compared with the control without amendment but with spraying of deionized water, both SSBA and lime significantly reduced concentrations of CaCl2-extractable Cd in soil by 30%-39% and 31%-40% and Cd in brown rice by 44%-63% and 53%-72% in the pot and field experiments, respectively. Foliar Si, Se, and SS applications significantly reduced Cd accumulation in brown rice by 62%-64%, 72%-83%, and 39%-73%, respectively, increased rice grain yield, and improved antioxidant enzyme activities in rice leaves but with different trends in the pot and field experiments. Combinations of SSBA and lime with Si, Se, and SS had a non-significant synergistic effect on Cd reduction in brown rice compared to only foliar spraying or soil amendment in both pot and field experiments, although SSBA + Se and SSBA + Si reduced Cd concentration in brown rice by 16%-34% and 14%-24% compared to only foliar Si and Se and soil SSBA applications, respectively. Soil lime application and foliar Si spraying were the most cost-effective strategies to reduce Cd accumulation in brown rice in the field and pot experiments, respectively. Although soil amendments and foliar treatments were individually effective, their combinations failed to generate a significant synergistic reduction of Cd concentration in brown rice.  相似文献   

5.
The effect of six different zinc (Zn) application methods on grain yield and concentrations of Zn in whole shoots and grain was studied in wheat cultivars (Triticum aestivum, L. cvs. Gerek‐79, Dagdas‐94 and Bezostaja‐1 and Triticum durum, Desf. cv. Kunduru‐1149) grown on severely Zn‐deficient calcareous soils (DTPA‐extractable Zn: 0.12 mg‐kg‐1 soil) of Central Anatolia which is the major wheat growing area of Turkey. Zinc application methods tested were: a) control (no Zn application), b) soil, c) seed, d) leaf, e) soil+leaf, and f) seed+leaf applications. Irrespective of the method, application of Zn significantly increased grain yield in all cultivars. Compared to the control, increases in grain yield were about 260% with soil, soil+leaf, and seed+leaf, 204% with seed and 124% with leaf application of Zn. In a similar manner, biomass production (dry weight of above‐ground parts) was increased by Zn treatments. The highest increase (109%) was obtained with the soil application and the lowest increase (40%) with the leaf application. Significant effects of Zn application methods were also found on the yield components, i.e., spike number.m‐2, grain number‐spike‐1, and thousand kernel weight. Spike number.m‐2 was affected most by Zn applications, particularly by soil and soil+leaf applications. Concentrations of Zn in whole shoots and grain were greatly affected by different Zn treatments. In plants without added Zn, concentrations of Zn were about 10 mg‐kg‐1 both in shoots and grain and increased to 18 mg‐kg‐1 dry weight (DW) by soil application of Zn, but not affected by seed application of Zn. Soil+leaf application of Zn had the highest increase in concentration of Zn in shoot (82 mg‐kg‐1 DW) and grain (38 mg‐kg‐1 DW). Soil application of Zn was economical and had long‐term effects for enhancing grain yield of wheat grown on Zn deficient soils. When high grain yield and high Zn concentration in grains are desired, soil+leaf application of Zn was most effective method of Zn application.  相似文献   

6.
ZHOU Yanli  SUN Bo 《土壤圈》2017,27(6):1092-1104
There is a need for rice cultivars with high yields and nitrogen (N) use efficiency (NUE), but with low cadmium (Cd) accumulation in Cd-contaminated paddy soils. To determine the relative effects of rice genotype, soil type, and Cd addition on rice grain yield and NUE, a pot experiment consisting of nine rice cultivars was conducted in two types of paddy soils, red soil (RS) and yellow soil (YS), without or with Cd spiked at 0.6 mg kg-1. The N supply was from both soil organic N pools and N fertilizers; thus, NUE was defined as the grain yield per unit of total crop-available N in the soil. Cd addition decreased grain yield and NUE in most rice cultivars, which was mainly related to reduced N uptake efficiency (NpUE, defined as the percentage of N taken up by the crop per unit of soil available N). However, Cd addition enhanced N assimilation efficiency (NtUE, defined as the grain yield per unit of N taken up by the crop) by 21.9% on average in all rice cultivars. The NpUE was mainly affected by soil type, whereas NtUE was affected by rice cultivar. Hybrid cultivars had higher NUEs than the japonica and indica cultivars because of their greater biomass and higher tolerance to Cd contamination. Reduction of NUE after Cd addition was stronger in RS than in YS, which was related to the lower absorption capacity for Cd in RS. Canonical correspondence analysis-based variation partitioning showed that cultivar type had the largest effect (34.4%) on NUE, followed by Cd addition (15.2%) and soil type (10.0%).  相似文献   

7.
The yield of rice (Oryza sativa L.) has increased substantially with the development of new cultivars, but the role of potassium (K) requirement for the increase in grain yield and the genotypic advance is still unclear. In order to investigate this relationship a database of 1199 on‐farm measurements (harvest index 0.4) comprising > 400 modern rice cultivars was collected during 2005–2010 across major irrigated lowland rice–production regions of China. This was used to evaluate the relationships among K requirement, grain yield, and genetic improvement. Across all the sites and seasons, mean reciprocal internal efficiency of K (RIE‐K, kg K [t grain produced]–1) was 19.8 kg K (t grain)–1 and rice yield averaged 8.7 t ha–1. Considering four levels of grain yield (< 7.5, 7.5–9, 9–10.5, and > 10.5 t ha–1), the respective RIEs were 18.7, 19.4, 20.5, and 21.7 kg K (t grain)–1. The gradual increase in the RIE‐K with yield was attributed mainly to the increase in straw and grain K concentration and the decrease in the K harvest index. The RIE‐K values for ordinary inbred, ordinary hybrid, and “super rice” were 18.5, 20.1, and 19.9 kg K (t grain)–1, respectively. Examining the historical development of rice cultivars, the RIE‐K decreased from 40.9 (Nanjing1, early tall, inbred) in the 1950s to 19.8 (IR24, semi‐dwarf, ordinary inbred) in the 1970s, and then increased to 20.9 (Shanyou63, modern ordinary hybrid) in the 1980s and 20.6 kg K (t grain)–1 (II‐you084, “super” rice) in the 2000s. This variation in RIE‐K among grain‐yield levels and cultivars highlights the importance of information on rice K requirement in calculating K balance and optimal K‐fertilizer rate for rice production.  相似文献   

8.
陈怀满 《土壤学报》1985,22(1):85-92
在温室中进行了剖析添加的Cd、P、Zn对稻谷产量、植株和稻草中的矿物含量以及糙米中Cd的浓度的研究。P增加了稻谷和植株产量,而Cd、Zn和P-Zn的交互作用使其降低。稻谷和植株产量有类似的线性回归方程式,其稻谷的线性回归方程为: Y=17.24+0.0466(P)-0.1850(Cd)-0.1115(Zn)-0.0005(P-Zn) 其R2=0.97**,式中Y为稻谷产量(克/株);P为添加的P浓度(毫克/公斤);(Cd)为添加的Cd浓度(毫克/公斤);(Zn)为添加的Zn浓度(毫克/公斤);(P-Zn)为P和Zn的交互作用。所有处理均明显地影响着稻草中矿物元素的含量。粕米中的Cd浓度随着添加的Cd、P、Zn浓度的增加而增加;但多元回归分析表明只有Cd的影响是显著的。粕米中Cd的浓度与收获时用0.05M HCI所提取的风干土中的Cd浓度有极显著相关性(Y=0.75**).对糙米中Cd浓度的评价进行了简要的讨论。  相似文献   

9.
杜舒阳  丁昌峰  王兴祥 《土壤》2022,54(6):1219-1224
施用有机物料是水稻生产过程中提高产量的一条重要途径,明确有机物料的施用对糙米Hg积累的影响,对于Hg污染稻田的安全利用具有重要的指导意义。本研究采用盆栽实验,设置等量(3%,w/w)的油菜秸秆、猪粪和水稻秸秆生物炭,对比分析3种有机物料的施用对水稻产量及其对Hg在稻田系统的迁移转化的影响。结果表明,3种有机物料的施用均显著提高了水稻产量,但对土壤Hg甲基化和糙米Hg的积累影响则并不一致。油菜秸秆、猪粪和水稻秸秆生物炭处理下水稻产量分别提高17.6%、33.0%和39.9%。与相同水平土壤Hg处理相比,施用猪粪提高了土壤Hg的生物有效性,促进了土壤MeHg的生成,提高了糙米THg的富集系数,使糙米THg和MeHg的含量分别提高了34.5%和30.3%;施用油菜秸秆降低了土壤Hg的生物有效性,抑制了土壤Hg甲基化过程和水稻对Hg的富集,糙米THg和MeHg的含量分别降低了34.6%和36.2%;施用水稻秸秆生物炭降低了土壤Hg生物有效性和糙米THg的富集系数,糙米THg和MeHg的含量分别降低了46.9%和48.4%。因此,在Hg污染稻田中应慎重施用猪粪,可选择施用水稻秸秆生物炭和油菜秸秆,达到提高产量和阻控糙米Hg积累的双重效果。  相似文献   

10.
ABSTRACT

Drought affects many physiological and biochemical processes and thus reduces plant growth. Phosphorus (P) fertilization improves tolerance to drought stress in many plants. A greenhouse experiment examined the interactive effects of P nutrition and drought stress on P accumulation and translocation, yield, and protein concentration in grains of two cultivars of soybean [Glycine max (L.) Merr.]. Plants of cultivars ‘Heisheng 101’ (high protein in grains) and ‘Dongnong 464’ (low protein) were grown in a P-deficient soil supplied with 0–30 mg P kg?1 soil. Drought stress was imposed at the initial flowering (R1) or the podding (R4) stage. Drought stress limited P accumulation and reduced P translocation to the seed. The addition of P enhanced the concentration and accumulation of nitrogen (N) and P in shoots and seeds of both cultivars. Drought stress decreased shoot biomass, grain yield, and P accumulation; the decrease was greater in ‘Dongnong 46’ than ‘Heisheng 101,’ and even more so if drought stress was imposed at R4 than at R1. In contrast, drought stress increased the concentration of N in shoot and protein in grains. The addition of P alleviated the effect of drought stress on plant growth, P accumulation, and grain yield in both cultivars but to a greater extent in ‘Dongnong 46’. The results suggest that application of P fertilizers could mitigate drought stress at the reproductive stage, resulting in less yield penalty and improvement of grain quality of soybean grown in P-deficient soils.  相似文献   

11.
Genetic improvement (GI) of mid‐season indica rice (Oryza sativa L.) in China has been experienced four typical plant types during the past several decades, i.e., early tall cultivars (ET), dwarf cultivars (DC), semi‐dwarf cultivars (SDC) and super rice cultivars (SR). However, little is known about the changes in fertilizer nitrogen (N) efficiency and their relationships with grain yield during the GI. With 12 representative mid‐season indica cultivars of the four types during GI, the effects of GI on grain yield and nitrogen efficiency were investigated. The results show that GI significantly increased grain yield and agronomic efficiency (AE) of N fertilizer but had no significant effect on recovery efficiency (RE) of N fertilizer. The low percentage of filled grains in modern SR limited its yield potential and the further increase in AE. GI decreased the N uptake from heading to maturity, leading to lower RE in modern rice cultivars. The rapid decline of the activities of root oxidation and nitrate reductase in SR during grain filling might be the physiological reasons for the lower percentage of filled grains and lower N uptake from heading to maturity.  相似文献   

12.
Rice production and cyanobacterial N in acid soil can be improved by liming. There is evidence that the organic amendments can increase the soil pH. The aim of this study was to find appropriate combination of soil amendments and cyanobacteria capable for enhancing nutrient uptake and improving rice yield in acidic paddy soil. Three soil amendments (rice straw, sewage‐sludge composts, NPK) with and without inoculation of cyanobacteria were studied for rice plants (Oryza sativa L.) in a pot experiment. The sludge compost had significantly reduced soil acidity from 5.44 to 6.67. The plant N and K uptake increased significantly with sludge and cyanobacteria application. The yield components increased significantly with sludge, but decreased thereafter, an exception was the number of panicles, with straw compost. These characters were also significantly affected by inoculation with cyanobacteria except 100‐grain weight, filled‐grain percentage, and harvest index. The combination of sludge compost and cyanobacteria improved the yield components and consequently grain yield (138 g pot–1) compared with sludge treatment only (132 g pot–1). The amount of cyanobacterial N absorbed (N‐difference method) by rice plant under sludge compost was higher than that of soils amended with either rice straw or NPK treatments. Therefore, the addition of sewage sludge to acid paddy soil not only amended the soil properties but also activated the cyanobacteria and consequently improved rice plant nutrition and grain yield.  相似文献   

13.
A pot experiment, in which composted pig manure was applied to soils at rates of 0%, 0.5%, 1.5%, 3.0%, and 5.0% (W/W) to simulate additions of different amounts of cadmium (Cd), copper (Cu), and zinc (Zn) to soil, was conducted to assess accumulation of metals by rice (Oryza sativa L.) plants from soils treated with manure. Results indicated that Cd concentrations in rice grains were more than the limit of 0.2 mg kg?1 when 0.14 mg kg?1 or more Cd was loaded to Ferralsols by manure application, but it was not more than the limit in Calcaric Cambisols. Zinc contents in polished rice grains did not exceed the permissible limit of 50 mg kg?1 in two soils. Copper concentrations in rice grain were slightly more than the limit of 10 mg kg?1 in Ferralsols but not in Calcaric Cambisols. Results suggested greater risk of heavy‐metal contamination from manure to paddy rice in Ferralsols than in Calcaric Cambisols.  相似文献   

14.
15.
Ferulic and p‐coumaric acids were analyzed in 50 rice (Oryza sativa L.) samples from 32 cultivars harvested in Japan. In brown rice, ferulic and p‐coumaric acid levels ranged from 309 to 607 mg/kg and from 49 to 100 mg/kg, respectively. In 70% polished rice, ferulic and p‐coumaric acid levels ranged from 27 to 103 mg/kg and from 0.4 to 3.5 mg/kg, respectively. Ratios of average phenolic acid levels in the 70% polished rice to the brown rice were 13.9% for ferulic acid and 1.9% for p‐coumaric acid. The ferulic acid level was highly correlated between brown and 70% polished rice (R = 0.815; P < 0.01), but there was no clear correlation for p‐coumaric acid. Phenolic acid levels in the 70% polished rice did not show any clear correlations between the analytical index measurements for sake brewing suitability (weight of 1,000 grains, water absorption, digestibility, crude protein, and potassium content). Phenolic acid levels in the 70% polished rice directly affected levels in the rice koji enzyme digest. The results indicated that phenolic acid levels in sake were affected by the levels in ingredient rice grains, which may then influence the sensory quality of sake.  相似文献   

16.
水稻是我国重要的粮食作物,由于受重金属污染威胁日益增大,其安全生产问题备受关注。通过综述我国稻田土壤及稻米镉污染现状、镉污染土壤改良剂研究进展以及稻米对镉富集的品种间差异,认为在土壤中镉的去除修复技术无法在短时间内实现的前提下,镉排异型水稻品种的筛选与利用是实现其安全生产的一个新的有效措施。在此基础上,配合一些污染土壤改良剂的使用,会进一步增强其安全生产水平。  相似文献   

17.
The effect of source and sink manipulation on accumulation of micronutrients (Fe, Zn, Mn, Cu) and protein in wheat grains was studied in a field experiment and ear culture. The source and sink manipulation was obtained by reducing assimilate source (through defoliation and spike shading) or sink (through 50% spikelets removal) after anthesis in the field and by changing sucrose or NH4NO3 levels of the culture media in ear culture. In the field experiment, reducing source and sink generally increased Fe, Zn, Mn, Cu, and protein concentrations except defoliation which decreased Mn concentration. Grain yield as well as micronutrient and protein contents in grains were all reduced by reducing source and sink sizes, suggesting that the accumulation of micronutrients and protein in grains was restricted by source supply and sink capacity. In ear culture, the supply of 20 to 80 g L–1 sucrose increased grain weight and yield, but decreased grain Fe, Zn, Mn, Cu, and protein concentrations. The supply of 0.57 to 2.28 g L–1 NH4NO3 increased grain yield and the concentrations and contents of micronutrients and protein. All these results show that micronutrient and protein accumulation in grains can be affected by the source–sink relationship of carbohydrate and nitrogen. Adequate N supply can simultaneously increase grain yield and the accumulation of Fe, Zn, Mn, Cu, and protein.  相似文献   

18.
王月梅  王作鹏  李承骏  赵玲  滕应  骆永明 《土壤》2022,54(6):1225-1232
为了探明KMnO4改性猪粪炭对水稻吸收累积复合污染土壤中汞镉的阻控效果,通过盆栽试验研究添加不同量的锰改性猪粪炭(MZC)对水稻中汞镉累积分布特征、根际土壤有效态汞镉含量和土壤理化性质的影响,并探讨了MZC阻控水稻籽粒吸收累积汞镉的可能机制。结果表明:与空白对照相比,添加0.5%MZC使水稻籽粒的总汞、甲基汞和总镉含量分别降低了50.4%、58.4%和79.3%,同时降低了31.1%和39.9%根际土壤有效态汞和镉的含量,但增加了70.3%根际土壤总Mn含量;且添加0.5%的原始猪粪炭对水稻籽粒中总汞、甲基汞和镉含量的降幅显著小于锰改性猪粪炭的,表明经过KMnO4改性可以显著增强猪粪炭对土壤汞镉的钝化能力。水稻籽粒、茎叶中的汞镉含量和根际土壤有效态汞镉含量都随着MZC添加量的增加呈明显的降低趋势。统计分析显示水稻籽粒和茎叶中的汞镉含量与根际土壤中有效态汞、镉呈显著正相关性,而土壤中有效态汞镉含量与土壤的pH、CEC呈负相关。添加MZC使土壤pH、CEC升高,降低了根际土壤中汞、镉的生物有效性,从而减少了水稻地上部分对汞镉的吸收累积。因此,锰改性猪粪炭是一种具有应用潜力的能保障汞镉复合污染农田水稻安全生产的土壤修复剂。  相似文献   

19.
Durum wheat (Triticum turgidum L. var durum) is a species that accumulates cadmium (Cd). Durum wheat cultivars differ in their absorption ability of Cd; therefore, identifying and selecting genetic material with low Cd accumulation reduces human exposure to this toxic element. In the present study, Cd concentration was evaluated in three Chilean durum wheat cultivars (Llareta-INIA, Corcolén-INIA, and Lleuque-INIA) grown in four Chilean locations with varying concentrations of Cd in soils. The objective of this study was to evaluate the response of these durum wheat cultivars to different doses of cadmium in terms of grain yield; Cd concentration in different plant tissues (grain, straw, roots); soil Cd concentration was also evaluated. Results show that grain yield was not affected by soil Cd; differences in Cd concentration in plant tissues were generally associated with location, cultivar, and soil Cd concentration. Grain Cd concentration in all three cultivars was classified in the low accumulation category for this metal; ‘Lleuque-INIA’ noted as having a very low accumulation.  相似文献   

20.
Phytic acid (myo‐inositol‐1,2,3,4,5,6‐hexakisphosphate) is the most abundant form of phosphorus (P) in cereal grains and is important to grain nutritional quality. In mature rice (Oryza sativa L.) grains, the bulk of phytic acid P is found in the germ and aleurone layer, deposited primarily as a mixed K/Mg salt. Phosphorus components and minerals were measured in whole grain produced by either the rice (Oryza sativa L.) cv. Kaybonnet (the nonmutant control) or the low phytic acid 1‐1 (lpa1‐1) mutant, and in these grains when milled to different degrees (10, 12, 17, 20, 22, and 25%, w/w). Phytic acid P is reduced by 42–45% in lpa1‐1 whole grain as compared with Kaybonnet, but these whole grains had similar levels of total P, Ca, Fe, K, Mg, Mn, and Zn. In both genotypes, the concentration of phytic acid P, total P, Ca, Fe, K, Mg, and Mn in the milled products was reduced by 60–90%, as compared with whole grain. However, a trend was observed for higher (25–40%) total P, K, and Mg concentrations in lpa1‐1 milled products as compared with Kaybonnet milled products. The reduction in whole grain phytic acid P in rice lpa1‐1 is accompanied by a 5‐ to 10‐fold increase in grain inorganic P, and this increase was observed in both whole grain and milled products. Phytic acid P was also reduced by 45% in bran obtained from lpa1‐1 grain, and this was accompanied by a 10‐fold increase in inorganic P. Milling had no apparent effect on Zn concentration. Therefore, while the block in the accumulation of phytic acid in lpa1‐1 seed has little effect on whole grain total P and mineral concentration, it greatly alters the chemistry of these seed constituents, and to a lesser but detectable extent, alters their distribution between germ, central endosperm, and aleurone. These studies suggest that development of a low phytate rice might improve the nutritional quality of whole grain, milled rice and the bran produced during milling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号