首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

2.
Wheat cultivars differ widely in manganese (Mn) efficiency. To investigate the reasons for different Mn efficiencies, a pot experiment with soil, a solution‐culture experiment, and model calculations were carried out. The pot experiment was conducted with wheat (Triticum aestivum L. cvs. PBW 373, PBW 154, PBW 343, PBW 138, and Triticum durum L. cvs. PBW 34 and PDW 233) grown in a screen house in India. The soil was a loamy sand with pH 8.1, DTPA‐extractable Mn 1.62 mg (kg soil)–1, and initial soil solution Mn concentration (CLi) of 0.19 μM. When fertilized with 50 mg Mn (kg soil)–1, CLi increased to 0.32 μM. At CLi 0.19 μM, wheat cv. PBW 373 produced 74% of its maximum shoot dry weight (SDW) with 64% of its maximum root length (RL), while cv. PDW 233 produced only 25% of its maximum SDW with 11% of its maximum RL. The other wheat cultivars were between these extremes. Manganese deficiency caused a reduction in shoot growth, but more strongly reduced root growth. The low Mn efficiency of T. durum cv. PDW 233 was related to a strong depression of its root growth. Manganese influx was similar for all cultivars. In solution culture below 1 μM Mn, under controlled climate‐chamber conditions, Mn influx was linearly related to Mn concentration. Both the efficient cv. PBW 343 and the inefficient cv. PDW 233 had a similar influx. Uptake kinetic parameters from the solution experiment together with soil and plant parameters from the pot experiment were used in a mechanistic nutrient‐uptake model. Calculated values of Mn influx for wheat grown in soil were 55% to 74% of measured values. A sensitivity analysis showed that increasing CLi or the slope of the uptake isotherm by about 30% would be enough to reach the observed influx. The results of this research indicate that an increase of Mn solubility by microbial or chemical mobilization would increase Mn uptake. But on the other hand, no chemical mobilization would be required to increase Mn uptake if the plant improved its uptake kinetics. Low Mn efficiency of some wheat cultivars was related to their reduced root growth at low soil Mn supply.  相似文献   

3.
A symptom called leaf‐oranging, indicating a deficiency of many nutrients, occurs in paddy rice (Oryzasativa L.) when production expands into some upland soils. Rice (Gui Chou cv.) was grown in culture pots in a flooded, weathered, upland soil (Nacogdoches) and compared to rice growth in a flooded soil currently used for paddy rice production (Dacosta) in Texas to understand the soil and plant factors involved in leaf‐oranging. Fertilizer rates of 0, 10, and 100 mg N/kg as (NH4)2SO4 were applied to each soil along with phosphorus (P) and potassium (K) fertilizer. The orange Leaf Index (OLI), a measure of leaf‐oranging, was determined weekly and increased to 60–70% for plants grown in the upland soil but its progression was delayed by higher N treatments. No leaf‐oranging was observed in the paddy soil. The soil evoking leaf‐oranging was low in silicon (Si) and high in iron (Fe). In addition, analysis of leaves from these plants showed 19–25% higher leaf ammonium‐nitrogen (NH4‐N), 9–137% higher manganese (Mn) levels and lower total N:NH4 concentration compared to normal rice leaves four weeks after transplanting. This inferred that leaf‐oranging probably was associated with some degree of NH4‐N toxicity and antagonism with K. Leaf‐oranging was also associated with low calcium (Ca) assimilation or Ca uptake inhibition because of the heavy Fe‐oxide coating of the roots of the affected rice plants. In this experiment, leaf‐oranging was not associated with toxic levels of Fe or Mn.  相似文献   

4.
The spatial distribution and speciation of iron (Fe), manganese (Mn) and arsenic (As) around rice roots grown in an As‐affected paddy field in Bangladesh were investigated on soil sampled after rice harvest. Synchrotron micro‐X‐ray fluorescence spectrometry on soil thin sections revealed that roots influence soil Fe, Mn and As distribution up to 1 mm away from the root–soil interface. Around thick roots (diameter around 500 µm), Mn was concentrated in discrete enrichments close to the root surface without associated As, whereas concentric Fe accumulations formed farther away and were closely correlated with As accumulations. Near thin roots (diameter < 100 µm), in contrast, a pronounced enrichment of Fe and As next to the root surface and a lack of Mn enrichments was observed. X‐ray absorption fine structure spectroscopy suggested that (i) accumulated Fe was mainly contained in a two‐line ferrihydrite‐like phase, (ii) associated As was mostly As(V) and (iii) Mn enrichments consisted of Mn(III/IV) oxyhydroxides. The distinct enrichment patterns can be related to the extent of O2 release from primary and lateral rice roots and the thermodynamics and kinetics of Fe, Mn and As redox transformations. Our results suggest that in addition to Fe(III) plaque at the root surface, element accumulation and speciation in the surrounding rhizosphere soil must be taken into account when addressing the transfer of nutrients or contaminants into rice roots.  相似文献   

5.
《Journal of plant nutrition》2013,36(12):2259-2272
Abstract

Pot experiments were conducted in a glasshouse to investigate the effect of soil water content and phosphorus (P) supply on biomass, P uptake by rice cultivated in soils with different water regimes and soil available P. Results showed that P application rates had greater effect on P nutrition of rice than soil moisture content. Yield of rice grain was significantly decreased when soil moisture content was kept at 60% of water holding capacity (WHC) while the yields of rice grain were not significantly different when soil moistures were remained at 80% of WHC and waterlogged. This meant that it was possible for paddy rice variety to be cultivated in aerobic soil under the condition of sufficient P supply. The highest biomass of rice and highest P uptake by rice were found in the treatment with 0.0300 g P kg?1 of P application rate and with 80% of WHC. Soil available P content decreased with the decrease of both the soil moisture content and the P applied. Rice crop exhausted soil P to a great extent leading to very low available soil P content when the rice crop was harvested, especially in the soil receiving no or small amounts of P fertilizer. All the results obtained in this experiment could provide the theoretic base for water and P management of paddy rice variety cultivated in aerobic soil in the southern hilly areas of China.  相似文献   

6.
不同水分和施磷量对旱作水稻耗水量和水分利用率的影响   总被引:6,自引:2,他引:6  
通过温室盆栽试验研究了土壤水分和磷素对旱作水稻的耗水量和水分利用率的影响。研究表明 :土壤水分和施磷量对旱作水稻耗水量和水分利用率有极显著的影响 ,且相互间的交互作用明显。旱作水稻 (包括种子 )的耗水量均以中水到高水和中磷到高磷时最高 ,耗水量在生长前期占全生育期的1 5 %~ 1 8% ,生长中期占 63 %~ 68% ,生长后期占 1 6%~ 2 0 %。水分利用率在苗期 (1 2 5~ 1 60gL- 1) ,以低水到中水和低磷到中磷时最高 ;中期 (2 2 2~ 3 5 6gL- 1)到后期 (1 68~ 2 0 8gL- 1) ,以低水到中水和中磷到高磷时最高 ;不同生长阶段的耗水量和水分利用率均以生长中期 >后期 >前期。上述结果将为中国南方丘岗地区水稻旱作的水分和磷素管理提供理论依据  相似文献   

7.
Abstract

Paddy soils of over 500 hectares had been polluted by arsenic (As) from tailings at an abandoned lead‐zinc mine at Shaoxing, Zhejiang, China. Several field experiments were conducted to establish measures for reducing As toxicity to rice plants. The results obtained were as follows. Fresh Chinese milkvetch (Astragalus sinicus L.) was not supposed to be used as green manure in arsenic polluted paddy soils. Although liming (1,500 kg CaO hectare‐1) could reduce water‐soluble As (H2O‐As) in the soil, the rice plant grew badly. The treatments of FeCl3 (25 mg Fe kg‐1 soil) and MnO2 (25 mg Mn kg‐1 soil) could markedly lower the H2O‐As and arsenite [As(III)] percentage in the soil and make the plant grow better than the control experiment (CK). Without adding any materials to the soil, wetting and drying (furrowing and draining) in the paddy soil could increase soil redox potential greatly and lower the H2O‐As and As(III) percentage obviously leading to better rice growth. In addition, the As contents of roots, flag leaf, grain, and husked rice of 11 new cultivare of early rice were determined and correlation analysis was conducted. Uptake and accumulation of As in different parts of cultivars Zhefu‐802 and Erjiufeng at the 4 As levels of the paddy soil demonstrated that the As contents in husked rice of both cultivars exceeded the hygienic standard (0.7 mg As kg‐1) when they grew in the paddy soil having total As content of about 70 mg kg‐1 for Zhefu‐802 and 100 mg kg‐1 for Erjiufeng, respectively.  相似文献   

8.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

9.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

10.
Rice (Oryza Sativa L.) nutrition is influenced by the interactions of (Iron) Fe, (Manganese) Mn, and (Silicon) Si in the rhizosphere. A greenhouse experiment was carried out with rice grown in four low‐pH soils (a granitic lateritic red earth, a paddy soil from the red earth, a basaltic latosol, and a paddy soil from the latosol). Rice was grown in pots with the roots confined in rhizobags and the rhizosphere soil and nonrhizosphere soil were analyzed separately for active Si, Fe, and Mn by Tamm's solution. Silicon and Mn concentrations were lower in the rhizosphere soil indicating a depletion which was higher for the basaltic soils and for the paddy soils. Iron concentrations were higher in the rhizosphere soil indicating an accumulation that was higher for granitic soils and for the upland soils. Plant growth response was due mostly to Mn with the basaltic soils supplying toxic amounts and the granitic soils being deficient. Iron accumulation in the rhizosphere caused lower plant uptake of Si, phosphorus (P), and calcium (Ca) and higher Fe and aluminum (Al) absorption leading to the conclusion that Fe deposition on plant roots and in rhizosphere may block the uptake of other nutrients.  相似文献   

11.
旱改水对水稻幼苗生长的影响及秸秆的改良作用   总被引:3,自引:0,他引:3  
本研究以江汉平原旱改水为研究背景,采用土壤盆栽试验和室内淹水培养相结合的方法,以多年水稻土为对照,研究了多年棉田土旱改水及添加秸秆(9 g·kg-1)对水稻幼苗生长和矿质元素吸收的影响以及土壤氧化还原电位和有效态铁、锰、铜、锌含量变化,为旱改水水稻的种植提供参考。结果表明,棉田土旱改水后,水稻幼苗生长缓慢并出现失绿黄化症状,其地上部干重和叶绿素含量仅分别约为水稻土处理的30%和20%。旱改水处理水稻植株Fe含量显著低于、而Cu和Zn含量则显著高于水稻土处理。棉田土旱改水土壤氧化还原电位(Eh)显著高于水稻土;淹水处理10 d,土壤DTPA-Fe含量仅为水稻土的7%左右,而DTPA-Cu和DTPA-Zn含量则分别是水稻土的1.4~2.5倍和1.6~1.8倍。随着淹水时间的延长,棉田土旱改水土壤有效态铁含量逐渐增加,有效态锰、铜和锌含量呈先升高后降低趋势;到淹水处理的第28 d,棉田土旱改水土壤有效态铁、锰、铜和锌含量与水稻土之间的差异逐渐缩小。Fe不足及Cu过量可能是导致旱改水水稻幼苗生长缓慢、失绿黄化的主要原因。旱改水条件下添加秸秆可以降低土壤的Eh值,提高土壤DTPA-Fe含量及降低土壤DTPA-Cu和DTPA-Zn含量,显著提高旱改水初期水稻幼苗叶绿素含量,但对水稻生物量无显著影响。添加秸秆并不能完全消除旱改水对水稻幼苗生长的抑制作用。  相似文献   

12.
Soil organic carbon (SOC) is one of the important measures of soil fertility and sustainability in arable lands. With continuous CO2 flux measurements, this study assessed the SOC decomposition and its environmental controls at both half‐hourly and season‐long scales in a single‐crop rice (Oryza sativa L.) paddy during three fallow periods between 2004 and 2007. Measurements were made on a gray lowland soil sited in eastern Japan using the eddy covariance method. Ecosystem respiration was strongly affected by soil water content measured at 0–0·1 m depth. At 0·5 m3 m− 3 or more of soil water content, the baseline of ecosystem respiration decreased by 50% compared with that at 0·2 m3 m− 3 . The effect was quantified at half‐hourly scale using an empirical multiple regression model, together with the soil surface temperature and the time after residue incorporation. At season‐long scale, net biome production, which is equivalent to the change in the SOC pool during the fallow period, was estimated from the flux and ancillary data at 150 g C m− 2 in 2004–2005, 70 g m− 2 in 2005–2006, and 270 g C m− 2 in 2006–2007. Apparently, as much as 46 to 79% of the soil organic matter incorporated (crop residues, ratoon, and stable manure) was decomposed during the fallow period. Precipitation, or associated soil water content, was important for the carbon balance of the field at season‐long scale because of its large interannual variability and relatively low permeability of the paddy soil. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Spatial variability of hydro‐physical properties has long been observed, whereas temporal variation is much less documented and considered in studies and applications, particularly of paddy clay soils under different cropping systems. The objective of this study was therefore to assess the seasonal‐ and inter‐seasonal variation of selected hydro‐physical properties of a paddy clay soil under different rice‐based cropping systems with contrasting tillage. In a long‐term experiment, plots were arranged in a randomized complete block design with four treatments and four replications: (i) rice–rice–rice; (ii) rice–maize–rice; (iii) rice–mung bean–rice; and (iv) rice–mung bean–maize. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) at three times during two cropping seasons, i.e., 15 days after soil preparation (DASP), 45 DASP and 90 DASP during the winter–spring and spring–summer seasons. Results show that temporal variability of soil bulk density, macro‐porosity (MacP) and matrix‐porosity within both seasons and between seasons was limited for cropping systems with upland crop rotations, whereas within season variation was significant for rice monoculture system. Observed variation in bulk density, matrix‐porosity and MacP was mainly associated with cropping system and soil depth. Field saturated hydraulic conductivity of topsoil showed great temporal variability, both seasonal and inter‐seasonal, in correspondence with MacP (r  = 0·58). These results highlight the need of depth differentiated soil sampling and time consideration when evaluating management practices on soil physical properties and modeling the hydrological behavior of paddy soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In pot experiments, uptake of zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) by hybrid rice from different soil types was compared with a traditional rice (Oryza sativa L.) cultivar. The concentration and total uptake of Fe in the shoots of hybrid rice grown in Oxisol and Ultisol were lower than those of the traditional cultivar. The concentration and total uptake of Zn in the shoots of hybrid rice grown in the Inceptisol (calcareous) were significantly higher than those of the traditional cultivar. Higher ratios of Zn and Fe in upper leaves (UL) to the lower leaves (LL) were found in hybrid rice grown in the calcareous Zn‐deficiency soil. The results indicated that hybrid rice root avoided absorbing excess Fe from Fe‐toxic soils due to its higher oxidizing power, and was more efficient in absorbing Zn from calcareous Zn‐deficient soils than the traditional cultivar.  相似文献   

15.
Manganese (Mn) deficiency is reported worldwide and often decreases crop yield. However, plant species differ in their susceptibility to Mn deficiency. Poaceae are often inefficient, whereas Brassicaceae seem to be efficient in Mn uptake. The objective of this paper was to determine the relevance of Mn‐uptake kinetics, root‐system size, and Mn mobilization for differences in Mn efficiency of wheat, oat, and raya. To determine Mn‐uptake kinetics, wheat (Triticum aestivum L. cv. PBW 343), raya (Brassica juncea L. cv. RLM 619), and oat (Avena sativa L. cv. Aragon) were grown in a growth chamber together in complete nutrient solution having an average Mn concentration of 90, 180, 360, 910, and 2270 nmol L–1. For determining Mn efficiency of the three species in soil, the plants were grown for 22 d in pots filled with 3 kg of a loamy soil low in Mn availability (pH (CaCl2) 7.4; DTPA‐extractable Mn: 3.5 mg (kg soil)–1). The soil was fertilized with 0, 1, 2, 4, and 8 mmol Mn (kg soil)–1 resulting in Mn soil‐solution concentrations ranging from 40 to 90 nmol L–1, hence lower than in the solution experiment. In order to determine Mn soil‐solution concentration close to the root surface, the root length density was increased by growing two plants of raya and four plants of wheat in only 250 mL soil columns for 25 d. In solution culture at high concentrations, raya showed a higher Mn uptake compared to wheat and oat. However, at low Mn supply, all three species were comparably Mn‐efficient, i.e., plant growth was similar, and also the uptake was similar. In soil, the highest yield was achieved for raya in the unfertilized treatment whereas the Poaceae needed at least a fertilization of 1 mmol Mn (kg soil)–1. The Poaceae showed a yield reduction of about 40% in the unfertilized treatment. Manganese concentration in the shoot dry weight was always higher in raya than in wheat or oat. This was due to a higher Mn uptake whereas relative shoot‐growth rate and root‐to‐shoot ratio were similar among the species. The higher Mn uptake of raya in soil was in contradiction to the comparable Mn‐uptake kinetics of the three crops at low Mn concentration in solution. This points to plant differences in their ability to affect Mn availability in the rhizosphere. In the bulk soil, all the crops decreased Mn solution concentration, but this effect was somewhat less for raya. But in the rhizosphere, raya increased Mn soil‐solution concentration significantly to 58 nmol L–1, as compared to 37 nmol L–1 of the unplanted control soil. In contrast, wheat showed a Mn solution concentration of 25 nmol L–1 which was not significantly different from the control. The results indicate that differences in Mn efficiency among the crops studied are related to their ability to affect the solubility of Mn in the rhizosphere.  相似文献   

16.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

17.
Nitrogen (N) fertilizer use efficiency (NUE) in flooded paddy fields is relatively low. Many N fertilizer management options have been proposed to enhance NUE and minimize environmental damage. However, few investigations are focusing on the role of the characteristics of soil N transformations in regulating NUE and N losses in paddy fields. In this study, we test the role of soil N transformations on NUE and N losses under rice growth conditions in two paddy soils collected from Jiangxi (JX) and Sichuan (SC) in China. The N recoveries of applied 15N either as nitrate or ammonium in plant and soil, and N losses estimated by 15N balance were investigated in rice pot experiments using a 15N tracing technique. The results showed that gross nitrification rates in soil collected from JX were much lower than those in soils collected from SC either at 60% water holding capacity (WHC) or rice growth (flooding) conditions, which could be due to the difference in soil pH. The ‐N concentration in soil solution was maintained at a relatively high level for a long time period after N fertilizer application in the JX soil (41 d) compared to the SC soil (26 d), caused by different nitrification rates owing to different soil pH. The 15N uptake by rice in the JX soil (29–78%) was always significantly higher than that in the SC soil (22–54%), while N losses from the plant–soil system in the JX soil (17–21%) were always significantly lower than those from the SC soil (20–34%) at the same rice growth stage in the labeled 15N ammonium treatment. However, there were no significant differences in 15N uptake by rice and N losses in applied treatment between the two studied soils. These results indicate that nitrification, not denitrification, was the key process determining NUE and N losses in paddy soils. The results of the N application gradient experiment also indicated that higher amounts of N fertilizer should be applied for the same amount of N uptake, however, this caused higher N losses, in soils characterized by high nitrification rate (e.g ., the alkaline soil). Results highlighted that soil N transformations in particular nitrification rate provided a very good guideline for an optimized N management.  相似文献   

18.
Abstract

A comparison of corncob compost with lime on plant growth was studied in acid red soil with pH of 4.07. Lettuce, pea, and corn were selected as test plants for their varying tolerance to acid soil. The pot experiment compared six soil treatments and a check. Soil amendments were 1, 2, and 4 cmol calcium carbonate (CaCO3) kg‐1 and 5, 10, and 20 g corncob compost kg‐1 soil. Results showed higher manganese (Mn) than aluminum (Al) content of the shoot in all check group plants. Reduced shoot Mn content increased shoot dry weight in all test plants, regardless of acid soil tolerance or soil treatment. The higher the test plant resistance to soil acidity, the weaker the detoxification effect of corncob compost was on Al uptake when compared with the check group. Liming was more effective at reducing shoot Mn content than corncob compost with the exception of the more acidity sensitive lettuce. Shoot phosphorus (P) content, however, increased with corncob compost from enhanced organic matter rates. Corncob compost treatments significantly increased shoot dry weight over liming in the acid soil. This study demonstrated an environmentally acceptable use for an agricultural waste.  相似文献   

19.
Soil purple phototrophic bacterial (PPB) communities and their responses to elevated atmospheric carbon dioxide (CO2) concentration and nitrogen (N) fertilizer were investigated under a rotation of paddy rice (Oryza sativa L.) and winter wheat (Triticum aestivum L. cv. Yangmai 14) cultivation in a FACE (free‐air CO2 enrichment) system. Community structures and abundances of PPB were determined by denaturing gradient gel electrophoresis (DGGE) and real‐time quantitative PCR respectively, targeting the pufM gene, which encodes a protein in the light reaction centre of PPB. Soil PPB communities were more diverse and larger under rice than under wheat cultivation, which may be attributed to the flooding of the paddy field and soil moisture changes. Elevated atmospheric CO2 concentration significantly increased the abundance and biodiversity of PPB in soils under rice cultivation, while N fertilizer application rate had less effect on the abundance and diversity. Phylogenetic analysis showed that two common dominant DGGE bands belonged to Bradyrhizobium‐ and Rhodopseudomonas palustris‐like PPB in both rice and wheat soils. The results demonstrated a significant shift in soil PPB communities during the rice‐wheat rotation, and a strong positive response of PPB communities to an elevated atmospheric CO2 concentration. Our results also indicated that a diverse and abundant soil PPB community could occur in upland crop fields as well as in aquatic environments and paddy‐rice fields. These findings extend our understanding of the ecological significance of PPB in terrestrial soil environments and their responses to future climate change.  相似文献   

20.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号