首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
玉米深加工是全球第二大宗农产品加工行业,玉米淀粉制备过程中产生大量的副产物,如玉米浆(Maize Steep Liquor, MSL)。玉米浆色深味重、毒素含量高、处理困难,已经成为众多玉米深加工企业发展的桎梏。该研究主要利用玉米浆中丰富的速效氮源和微生物的促生长因子进行微生物菌肥的开发。通过对前期筛选到的3株植物根际促生菌(PGPMs)的共生发酵研究,评估了3种菌在玉米浆中高密度发酵的可行性,并对发酵特性进行了研究。试验结果表明,三种菌通过共生发酵,并在模拟流加工业废料结晶糖母液作为补料时,发酵体系中的总生物量从6.6×109提升到了2.17×1010 CFU/mL,并在52 h氨基酸态氮含量达到最大。同时,采用葡萄糖模拟结晶葡萄糖母液流加补料显著提高了共生体系的总糖以及溶磷的利用率,可溶性磷利用率提高了近50%;此外,添加葡萄糖还能保持发酵体系的pH值稳定,奠定了生产稳定性。该研究为玉米浆的再利用提供了一种解决方法,对低成本生物肥料的开发与生产提供了一种新的思路。  相似文献   

2.
酶法复合脱毒提高玉米秸秆水解液丁醇发酵效率   总被引:1,自引:1,他引:0  
利用玉米秸秆发酵产丁醇在生物质转化领域具有明显优势。为解除玉米秸秆水解液中多种有毒物质对微生物生长的抑制及对发酵产量的影响,该研究摒除常用的理化脱毒法,选择高效环保的酶法脱毒以实现溶剂高产。研究结果表明:通过优化漆酶和甲酸脱氢酶添加量以去除水解液中酚类和甲酸,单独添加漆酶5 U/m L、甲酸脱氢酶1 U/m L,水解液发酵的丙酮-丁醇-乙醇(acetone-butanol-ethanol,ABE,总溶剂)产量分别为1.03和1.11 g/L。再在活性炭的辅助下形成高效酶法复合脱毒体系,经复合脱毒处理的水解液发酵后丁醇产量达2.90 g/L,总溶剂ABE产量达到4.4 g/L,比未作处理的对照组发酵产量高出约5倍,实现了生物质的高效转化。可为玉米秸秆水解液发酵生产燃料丁醇提供参考。  相似文献   

3.
为探究有机废液在镉污染土壤施用对作物生长和环境健康风险的影响,该研究针对豌豆发酵液、玉米浆浓缩液、鸡粪浓缩沼液、糖蜜液和氨基酸母液5种价格低廉且在农业中应用广泛的有机废液,通过盆栽试验分析了施用2 ml/kg的5种有机废液对白菜生长与镉吸收的影响,并从白菜光合作用及抗氧化酶活性等角度进行了效果对比研究。结果表明,除氨基酸母液处理外,豌豆发酵液、玉米浆浓缩液、鸡粪浓缩沼液、糖蜜液处理较对照均可显著增加镉胁迫下白菜叶片净光合速率(P<0.05),促进白菜生长,其中施用玉米浆浓缩液分别使白菜地上部和地下部干质量提高了21.66%和68.75%。与对照相比,施用玉米浆浓缩液使白菜地上部的镉浓度降低了22.06%,并显著提高了白菜超氧化物歧化酶和过氧化氢酶活性(P<0.05),糖蜜液和氨基酸母液处理没有降低白菜镉浓度。施用玉米浆浓缩液、鸡粪浓缩沼液、糖蜜液和氨基酸母液均可显著降低白菜丙二醛含量(P<0.05),提高土壤有效态镉含量。综上,5种有机废液对镉污染条件下白菜生长和镉吸收转运的影响不同,玉米浆浓缩液促进白菜生长并减少镉积累效果最好,氨基酸母液效果最差。  相似文献   

4.
纤维原料预处理过程中会产生酚酸等抑制菌株生长的物质,为选育出高丁醇产量及高耐受酚酸胁迫丁醇生产菌株,该研究利用多因子复合筛选策略筛选出一株能够合成足够还原力与对丁醇耐受性较好的菌株Clostridium beijerinckii W6。通过丁醇胁迫适应性进化获得丁醇耐受菌W6-1,其丁醇和总溶剂产量相较于菌株W6分别提高了14.01%和16.85%。通过紫外诱变处理菌株W6-1并结合理性筛选模型最终获得丁醇产量较高菌株W6-2,其丁醇及总溶剂产量分别可达到(9.51±0.06)和(15.32±0.11)g/L。最后将菌株W6-2通过酚酸胁迫适应性进化得到突变菌W6-3,其能耐受1.0 g/L酚酸胁迫环境,且丁醇和总溶剂产量相较于菌株W6-2分别提高了18.17%和17.49%。当以葛渣水解液为底物进行丙酮丁醇发酵时,突变菌W6-3的丁醇产量达(8.54±0.31)g/L,相较于菌株W6-2提高了26.71%。经多轮次诱变及适应性进化处理获得的突变菌的酚酸耐受性及发酵性能均有较大提高,该文所采用的多轮次筛选方法可以为其他快速筛选优良生产菌提供可靠的理论参考。  相似文献   

5.
为探讨轻度“倒春寒”对不同防护措施下3种茶园蒸青茶样的茶汤滋味影响,遂选品种和管理措施一致的安装防霜扇的茶园、松树林围绕的茶园以及未设防护措施的普通茶园,用电子舌综合评价3种茶园茶汤滋味、高效液相色谱检测茶汤游离氨基酸组分及含量。结果表明:基于电子舌检测数据的主成分分析、软独立建模分析和聚类分析结果揭示了普通茶园的茶汤滋味与防霜扇茶园和林间茶园的差异显著(P<0.05);从9种茶样中皆检测出18种氨基酸,游离氨基酸质量分数介于19.691~30.947 mg/g 之间,茶氨酸含量占游离氨基酸含量的55.1%~70.5%;随着3种茶园气温的降低,游离氨基酸含量和茶氨酸含量呈升高趋势,3种鲜味氨基酸(天冬氨酸、谷氨酸、茶氨酸)、5种甜味氨基酸(脯氨酸、丙氨酸、甘氨酸、苏氨酸、丝氨酸)和5种苦味氨基酸(异亮氨酸、亮氨酸、苯丙氨酸、酪氨酸、缬氨酸)共占游离氨基酸含量在防霜扇茶园和林间茶园中分别出现升高、降低和降低趋势,而在普通茶园中变化与之不同。分析认为:轻度“倒春寒”可导致无防护措施的普通茶园茶叶滋味劣变,林间茶园能够减轻冻害,防霜扇作为防护手段不仅可以减免冻害,还可避免茶叶滋味品质下降。该研究结果为后续深入研究不同防护措施茶园茶叶品质提供参考。  相似文献   

6.
利用甜高粱秸秆汁发酵生产丁醇、丙酮   总被引:3,自引:1,他引:2  
该试验以甜高粱秸秆汁作为生产丙酮、丁醇的发酵原料,从5种丙酮-丁醇菌中选出能够利用甜高粱秸秆汁且丁醇产量高的Bacillus acetobutylicum Bd3菌作为试验菌株,并对该菌株的发酵条件进行优化,得到的优化条件为:糖度为10oBrix的甜高粱秸秆汁,玉米浆含量5 g/L,接种量6%(v/v),(NH4)2SO4 5 g/L,KH2PO4 0.4 g/L,CaCO3 6 g/L,温度32℃,pH6.8,丁醇产量达到10.29 g/L。  相似文献   

7.
珠美海棠和M26苹果矮化砧木分别在琼脂培养基和玉米淀粉(corn starch)凝胶培养基上进行生根培养,结果玉米淀粉培养基不但提高了两种植物的生根率,而且对生根诱导具有同步化效应。珠美海棠生根苗游离氨基酸含量的高效液相色谱(HPLC)分析表明,琼脂生根培养基上,吲哚丁酸(IBA)诱导了天冬氨酸、谷氨酸、组氨酸、苏氨酸、色、蛋氨酸和谷氨酰胺、丙、酪氨酸的降低,但却提高了精氨酸、缬氨酸、苯丙氨酸、亮氨酸和鸟氨酸的含量。当玉米淀粉替代琼脂后,玉米淀粉培养基不但进一步促进了上述氨基酸含量的降低,而且抑制了精氨酸、缬氨酸、苯丙氨酸等的升高。  相似文献   

8.
玉米粉细菌发酵生产L-乳酸的研究   总被引:1,自引:2,他引:1  
以玉米粉为细菌L-乳酸发酵的主要原料,不仅可以提高玉米的利用价值,而且可以降低L-乳酸的生产成本。将玉米粉经过双酶法得到的玉米糖化液为L-乳酸发酵的主要碳源,寻求适合细菌TL-2发酵生产L-乳酸的氮源及其合适的添加量。比较了几种不同平板培养基TL-2的生长情况,得出小肽-3可作为乳酸发酵培养基的有机氮源;在最初发酵培养基的基础上,改变其有机氮源及其含量,由发酵试验得,同样产酸量时,以10 g/L小肽-3为唯一氮源的发酵液的颜色最浅;并在此基础上,利用响应面分析法,得出初糖浓度:小肽-3为15.5∶1,摇床  相似文献   

9.
通过高效液相色谱技术分析了青海省果洛州达日县窝赛乡原生嵩草草甸、严重退化草地及人工草地三类植被土壤中各种氨基酸成分及含量。结果表明:(1)三种类型土壤中都检测出19种常见氨基酸:精氨酸、天冬氨酸、丝氨酸、谷氨酸、苏氨酸、丙氨酸、甘氨酸、氨基丁酸、脯氨酸、蛋氨酸、缬氨酸、苯丙氨酸、异亮氨酸、亮氨酸、胱氨酸、组氨酸、鸟氨酸、赖氨酸、酪氨酸;(2)测定结果表明原生嵩草草甸土壤的氨基酸总量显著高于人工恢复重建草地和严重退化土壤氨基酸,而后两者之间差异不显著。原生高寒草地的土壤(6316.28μgg-1)严重退化草地土壤(2977.10μgg-1)人工恢复重建草地土壤(2975.90μgg-1)。(3)原生高寒草地土壤氨基酸总体呈现下降趋势:5月氨基酸含量最高,随后6月7月的显著下降,8月稍微有所回升,9月氨基酸含量到达最低;严重退化草地土壤与人工恢复重建草地土壤氨基酸含量季节变化相似,氨基酸总量在6月份到达最高点,随后7月8月显著下降,9月份稍微有所回升。  相似文献   

10.
利用啤酒糟中的残糖和碳水化合物,适量补充氮源和菜籽粕,采用微生物固态发酵方法生产菌体蛋白饲料。试验结果表明:产品比发酵前粗蛋白提高10%以上,粗纤维降解率达10%以上,16种氨基酸总和占粗蛋白总量的比例达到了82%以上。试验证明啤酒糟为主要原料生产菌体蛋白饲料对有效利用啤酒糟资源和开发饲料蛋白具有重要的意义。  相似文献   

11.
An analytical method for the determination of free amino acids in ciders is reported. It is based on high-performance liquid chromatography with an automatic precolumn derivatization with o-phthaldehyde and 3-mercaptopropionic acid and diode array detection. The method was applied to monitor the amino acids during second fermentation of sparkling ciders. This paper reports the influence of yeast strains and aging time on the amino acid composition of sparkling ciders. The application of principal component analysis enables the ciders to be differentiated on the basis of the two factors considered (yeast strain and aging time). The first principal component, which accounts for 58% of the total variance, achieved the separation according to aging time with serine, glycine, alanine, valine, ornithine, leucine, and lysine as the most important variables. The second principal component, accounting for 28% of the explained variance, is closely related to aspartic acid and asparagine and separates the samples according to the yeast strain.  相似文献   

12.
The changes in amino acid composition that occur with maturity of the Noble cultivar of the Vitis rotundifolia Michx. (muscadine) grape were determined by HPLC. Eighteen amino acids were identified. Histidine was the most prominent amino acid followed by alanine. The concentrations of most of the major amino acids (alanine, glycine, histidine, valine, isoleucine, aspartic acid, and serine) were highest at verasion. Glutamine and threonine contents dropped sharply after fruit set, while those of arginine and proline increased gradually with maturity and ripening. Tyrosine content increased gradually with maturity and ripening following a slight drop after fruit set. In ripe grapes, seeds contained most of the amino acids in mature grapes (50%) followed by the pulp (23%), the juice (15%), and the skin (11%). Alanine, histidine, and arginine were the principal amino acids identified in the juice. Alanine, histidine, arginine, valine, glutamine, aspartic acid, proline, serine, and threonine accounted for about 90% of the amino acids in the pulp. In seeds, alanine, proline, asparagine, and histidine accounted for over 55% of the amino acids, while alanine and histidine were found to be the predominant free amino acids in the skin. The profile indicates some differences in the changes in amino acid composition with berry maturity and relative amounts of amino acids present in muscadine compared to those in nonmuscadine grape species.  相似文献   

13.
蒸汽爆破玉米芯水解液脱毒及其发酵生产燃料丁醇   总被引:1,自引:1,他引:0  
为探究以玉米芯为原料生产燃料丁醇的最佳工艺技术,该研究对蒸汽爆破玉米芯水解液的脱毒方式及脱毒后的水解液的丙酮丁醇发酵进行了研究。结果表明:D301树脂对玉米芯水解液进行脱毒的综合效果最好,甲酸、乙酸和总酚的脱除率分别达到60%、46.04%和56.31%,香草醛脱除率为100%,对糠醛和5-HMF的脱除率分别达到了82.95%和87.52%;同时总糖的损失率为4.38%。D301树脂脱毒后的水解液经C.acetobutylicum CICC 8016发酵丁醇和总溶剂产量分别为5.2和7.5 g/L,葡萄糖和总糖的利用率分别达到100%和73.67%。当D301树脂脱毒的玉米芯水解液初始糖的质量浓度为50 g/L时,丁醇和总溶剂(丙酮、丁醇和乙醇)的质量浓度分别达到最大9.7和14.6 g/L。该研究为利用玉米芯工业化生产燃料丁醇提供了可靠的技术支持。  相似文献   

14.
Summary Organic matter was extracted from three soils, a cultivated Berwick sandy loam, a cultivated Franklin loamy sand, and an uncultivated Cumberland silty loam. Gel-permeation chromatography was used to separate organic matter extracts into high- (HMW) and low-molecular-weight (LMW) fractions. Reversed-phase high performance liquid chromatography was used to separate and collect the LMW peptide fractions. Peptide samples were hydrolyzed with immobilized proteases attached to beaded agarose and carboxymethyl cellulose in column and batch reaction systems. The chromatograms suggested that peptides are bound to common soil components. The amino acids released in the greatest percentages were relatively non-polar. Large percentages of serine, glycine, alanine, threonine, and valine were observed in the LMW soil peptides. Little aspartic acid, asparagine, glutamic acid, glutamine, arginine, and no histidine was detected in the LMW soil peptides. The soil peptides released different amino acid percentages and quantities when hydrolyzed by immobilized proteases attached to different supports. The quanitities of amino acids released by batch hydrolysis differed from those obtained with column hydrolysis. Greater quantities of amino acids were released (by both types of immobilized protease) from the LMW peptide hydrolysates of the two cultivated soils than from the uncultivated soil.  相似文献   

15.
The effect of storage time on pH, titratable acidity, degrees Brix, organic acids, sugars, amino acids, and color of minimally processed cantaloupe melon (Cucumis melo L. var. reticulatus Naud. cv. Mission) was determined at 4 degrees C and 20 degrees C. Changes in most of the biochemical parameters with storage time were relatively slow at the lower temperature. At 20 degrees C, a 17% loss in soluble solids and a 2-fold increase in acidity occurred after 2 days. Organic acid content also increased considerably with time at this temperature as a result of the production of lactic acid. Oxalic, citric, malic, and succinic acids were the organic acids, and glucose, fructose, and sucrose were the sugars present in the freshly cut cantaloupe. Malic acid concentration decreased concurrently with lactic acid production indicating the possible involvement of anaerobic malo-lactic fermentation along with sugar utilization by lactic acid bacteria. The effect of storage on microbial growth was determined at 4, 10, and 20 degrees C. Gram-negative stained rods grew at a slower rate at 4 degrees C and 10 degrees C than the Gram-positive mesophilic bacteria that dominated microorganism growth at 20 degrees C. Eighteen amino acids were identified in fresh cantaloupe: aspartic acid, glutamic acid, asparagine, serine, glutamine, glycine, histidine, arginine, threonine, alanine, proline, tyrosine, valine, methionine, isoleucine, leucine, phenyl alanine, and lysine. The dominant amino acids were aspartic acid, glutamic acid, arginine, and alanine. Total amino acid content decreased rapidly at 20 degrees C, but only a slight decrease occurred at 4 degrees C after prolonged storage. Changes in lightness (L), chroma, and hue at both temperatures indicate the absence of browning reactions. The results indicate the potential use of lactic acid and lactic acid bacteria as quality control markers in minimally processed fruits.  相似文献   

16.
Twenty-one free amino acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by GC/FID. The analyses showed some differences between quince pulps and peels. Generally, the highest content in total free amino acids and in glycine was found in peels. As a general rule, the three major free amino acids detected in pulps were aspartic acid, asparagine, and hydroxyproline. For quince peels, usually, the three most abundant amino acids were glycine, aspartic acid, and asparagine. Similarly, for quince jams the most important free amino acids were aspartic acid, asparagine, and glycine or hydroxyproline. This study suggests that the free amino acid analysis can be useful for the evaluation of quince jam authenticity. It seems that glycine percentage can be used for the detection of quince peel addition while high alanine content can be related to pear addition.  相似文献   

17.
A comparative study on the amino acid composition of 11 wild edible mushroom species (Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius) was developed. To define the qualitative and quantitative profiles, a derivatization procedure with dabsyl chloride was performed, followed by HPLC-UV-vis analysis. Twenty free amino acids (aspartic acid, glutamic acid, asparagine, glutamine, serine, threonine, glycine, alanine, valine, proline, arginine, isoleucine, leucine, tryptophan, phenylalanine, cysteine, ornithine, lysine, histidine, and tyrosine) were determined. B. edulis and T. equestre were revealed to be the most nutritional species, whereas F. hepatica was the poorest. The different species exhibited distinct free amino acid profiles. The quantification of the identified compounds indicated that, in a general way, alanine was the major amino acid. The results show that the analyzed mushroom species possess moderate amino acid contents, which may be relevant from a nutritional point of view because these compounds are indispensable for human health. A combination of different mushroom species in the diet would offer good amounts of amino acids and a great diversity of palatable sensations.  相似文献   

18.
The effect of tartaric acid and other organic acids on alcoholic fermentation was studied. Organic acids in media with high sugar concentrations and ammonium as the sole nitrogen source had an enormous impact on Saccharomyces cerevisiae metabolism during alcoholic fermentation. The main effect on yeast metabolism was the quick acidification of the media in the absence of organic acids. All of the organic acids used in this study (tartaric, malic, citric, and succinic acids) showed a buffering capacity, but not all of the acids had the same one. However, the results suggested that buffering should not be considered the only effect of organic acids on yeast metabolism. Nitrogen source also had a great influence on media pH. Ammonium consumption by yeasts produced a greater acidification of the media than when amino acids were used.  相似文献   

19.
A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) in pak-choi (Brassica chinensis L.) shoots. When 20% of nitrate-N was replaced with arginine (Arg) compared to the full nitrate treatment, pak-choi shoot fresh and dry weights increased significantly (P ≤ 0.05), but when 20% of nitrate-N was replaced with alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), glycine (Gly), serine (Ser), threonine (Thr), cysteine (Cys), and tyrosine (Tyr), shoot fresh and dry weights decreased significantly (P ≤ 0.05). After replacing 20% of nitrate-N with asparagine (Asn) and glutamine (Gin), shoot fresh and dry weights were unaffected. Compared to the full nitrate treatment, amino acid replacement treatments, except for Cys, Gly, histidine (His), and Arg, significantly reduced (P ≤0.05) nitrate concentrations in plant shoots. Except for Cys, Leu, Pro, and Met, total N concentrations in plant tissues of the other amino acid treatments significantly increased (P ≤ 0.05). Amino acids also affected total P and K concentrations, but the effects differed depending on individual amino acids. To improve pak-choi shoot quality, Gln and Asn, due to their insignificant effects on pak-choi growth, their significant reduction in nitrate concentrations, and their increase in macroelement content in plants, may be used to partially replace nitrate-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号