首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
电生功能水和静电场处理对草莓采后生理的影响   总被引:3,自引:1,他引:3  
以“星都2号”草莓果实为试材,研究电生功能水及静电场(-50 kV/m)处理对冷藏草莓(贮藏温度为0℃,相对湿度为85%~90%)果肉最大破断应力、呼吸强度、乙烯释放量及细胞膜透性变化的影响。试验结果表明:电生功能水处理明显抑制了草莓的乙烯释放,降低了草莓果实的呼吸强度,而静电场处理也一定程度地降低了果实的乙烯释放量,但对果实呼吸强度无明显的影响。二者均可保持贮藏期间草莓最大破断应力,延缓果肉细胞相对电导率的上升,从而有效地抑制采后草莓果实的衰老过程。相比较而言,电生功能水处理效果优于静电场。  相似文献   

2.
高压静电场处理对红元帅苹果采后品质的影响   总被引:1,自引:0,他引:1  
该研究利用自制的高压静电场保鲜实验台产生的-50 kV/m和-100 kV/m高压静电场处理红元帅苹果,贮藏过程中每4d测定1次果实呼吸强度、内源乙烯释放量、果实硬度和可溶性固形物含量变化,并在贮藏结束时,对果实品质进行感官评定。实验结果表明:高压静电场处理使红元帅苹果的乙烯释放高峰推迟4 d,乙烯释放高峰值显著低于对照,并且使果实呼吸跃变推迟8 d。高压静电场处理苹果,在20℃条件下贮藏24 d,果实硬度和可溶性固形物含量显著高于对照,果实新鲜程度、脆性、硬度、粉性、甜味和苹果味等感官指标显著比对照好(p<0.01),表明高压静电场处理对保持红元帅苹果的采后品质具有显著作用。  相似文献   

3.
为探讨贮藏温度对美味猕猴桃果实风味品质的影响,将猕猴桃布鲁诺果实贮藏于常温(20±0.5℃)、低温(1±0.5℃)下,采用气相色谱-质谱联用(GC-MS)测定猕猴桃果实常温和低温贮藏后主要挥发性成分的种类和含量变化;同时,分析果实挥发性成分合成的脂肪酸代谢途径底物(亚麻酸、亚油酸)含量、关键酶活性及其基因表达量的变化。结果表明,与常温相比,低温贮藏降低了猕猴桃果实中酯类物质的种类和相对含量,保持较高醛酮类物质种类和相对含量;常温贮藏下猕猴桃果实风味物质随贮藏时间变化明显,而低温则能够较好维持猕猴桃果实的特征风味。与常温贮藏相比,低温贮藏抑制了脂肪酸代谢中脂氧合酶(LOX)、脂氢过氧化物裂解酶(HPL)、乙醇脱氢酶(ADH)以及醇酰基转移酶(AAT)等关键酶活性及其基因的表达,降低了果实亚油酸和亚麻酸的分解,通过脂肪酸代谢途径合成的酯类物质也因此有所降低。本研究为低温贮藏调控猕猴桃果实风味物质合成及维持猕猴桃果实特征风味提供了理论依据。  相似文献   

4.
采用不同浓度CaCl2溶液浸泡黑宝石李采后果实,研究对其果实品质和延缓衰老的影响,达到延长贮藏期的目的。 结果表明:浸钙处理可显著抑制采后贮藏过程中果实可滴定酸含量、硬度和可溶性糖含量的下降,浸钙处理降低了果实可溶性固性物含量;贮藏期间浸钙处理后乙烯释放量显著低于对照,且峰值出现的时间比对照推迟15 d;浸钙处理可保持采后贮藏过程中果实较高的超氧化物歧化酶(SOD)活性和较低的丙二醛(MDA)含量,维持细胞内活性氧代谢平衡,显著降低膜脂过氧化作用,从而延缓果实成熟衰老进程,较好的保持了果实品质。4种钙浓度处理中以1%和2%CaCl2溶液浸果效果较好。  相似文献   

5.
本文以兰州“大接杏”(Armeniaca vulgaris Lam. cv. Lanzhou Dajie)为试材,使用硅酸钠(10 mM)化学诱抗处理,以探讨其对杏果实品质,特别是挥发性风味物质的影响。结果表明,硅酸钠处理可延缓果实硬度、可滴定酸、可溶性固形物(SSC)和Vc含量的下降,但对果实总糖含量的影响不显著。采用固相微萃取(SPME)结合气相色谱质谱联用(GC-MS)的方法分离鉴定了“大接杏”果实的香气成份,共分离鉴定出超过100多种挥发性成份。硅酸钠处理样挥发性物质的释放总量低于对照,同时处理后的杏果还表现出醛类物质、萜类物质和β-紫罗兰酮的释放增大和脂类物质的释放减少的现象。  相似文献   

6.
硅酸钠处理对杏品质和风味物质的影响(英)   总被引:1,自引:0,他引:1  
硅酸盐作为一种安全有效的物质,已被广泛用于果蔬等采后病害的控制,为了研究其处理对园艺产品品质的影响,该文以兰州“大接杏”(Armeniaca vulgaris Lam. cv. Lanzhou Dajie)为试验对象,在室温(22±2℃)下使用硅酸钠(10 mmol/L)化学诱抗处理,探讨硅酸盐对杏果实品质,特别是挥发性风味物质的影响。结果表明,硅酸钠处理可延缓果实硬度的下降和腐烂率的升高,在贮藏结束后,其分别是对照组的1.95倍和58%。并能够减少贮藏过程中可滴定酸、可溶性固形物及Vc含量的下降,但对果实总糖含量的影响不显著。采用固相微萃取(SPME)结合气相色谱质谱联用(GC-MS)的方法分离鉴定了“大接杏”果实的香气成分,共分离鉴定出超过100多种挥发性成分。硅酸钠处理样挥发性物质的释放总量低于对照。同时,处理后的杏果还表现出醛类物质、萜类物质和β-紫罗兰酮的释放增大和酯类物质的释放减少的现象。与对照相比,该处理能够更好地保持杏果实良好的品质,是一种可行的杏果保鲜处理方法。  相似文献   

7.
适宜1-MCP处理保持采后菠萝常温贮藏品质   总被引:4,自引:3,他引:4  
为了探索1-MCP处理对采后菠萝生理及品质的影响,为菠萝贮藏保鲜措施提供理论依据。以‘巴厘’品种的菠萝果实为试材,采用适宜0.45μL/L体积分数的1-MCP对菠萝进行处理,置于25℃条件下贮藏,采用气相色谱定期测定乙烯释放量,并采用常规理化分析方法测定菠萝品质及相关生理指标。结果表明,1-MCP处理能延缓果实贮藏过程中乙烯的合成速率,与相同贮藏条件下的对照(未处理)果实相比,乙烯释放高峰推迟4 d;1-MCP处理可以延缓果实丙二醛(malondialdehyde,MDA)含量的快速升高,同时对脂氧合酶(lipoxygenase,LOX)酶活性起到抑制作用;与对照相比,1-MCP处理推迟了过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)等酶活性高峰的出现,并使POD、CAT、过氧化物歧化酶(superoxide dismutase,SOD)等保持较高的活性,可以有效延缓菠萝在贮藏期间的衰老进程,在贮藏14 d时,分别比对照高出22.30%、32.35%、36.67%,差异显著(P0.05);1-MCP还可减缓果实可滴定酸、维生素C等含量的下降,有助于保持果实的良好品质。1-MCP处理可抑制菠萝贮藏期的果实衰老进程,有利于保持果实品质,提高贮藏效果。研究结果将为菠萝贮藏保鲜措施提供参考。  相似文献   

8.
  【目的】  有机肥浸提液可随水灌溉,研究灌溉频次和灌水量对甜瓜果实品质的影响,为有机甜瓜优质高产提供技术支撑。  【方法】  甜瓜小区试验采用随水滴灌施肥方法。所用有机肥浸提液是由腐熟干猪粪、牛粪、羊粪分别与水按1∶10质量比混合浸提72 h过滤后得到,再将3种滤液以4∶1∶1体积比混合,稀释4.3倍用于甜瓜施肥。试验设3个有机肥浸提液灌溉频次:施用8次,每次每株750 mL (F1);施用12次,每次每株500 mL (F2);施用16次,每次每株375 mL (F3)。单株灌水量设两个水平:W1为果实膨大前按日蒸腾蒸发量的120%灌溉,之后按其140%灌溉,W2两个时期灌水量分别为日蒸腾蒸发量的140%和160%。果实成熟后用SPME-GC-MS技术测定甜瓜果实挥发性物质成分和相对含量及纤维素含量。  【结果】  甜瓜果实中共检测出71种挥发性成分,其总含量各处理从高到低顺序为F2W2 > F1W1 > F3W1 > F1W2 > F3W2 > F2W1。6个处理中,共有挥发性物质为21种,其含量从高到低顺序与挥发性物质总含量排序一致。在W1下,果实特征香气物质含量以F1最高;而在W2下,其含量随着有机肥浸提液灌溉频次的增加先升高后降低,与前者变化趋势正好相反。相同有机肥浸提液灌溉频次条件下,变化规律不明显。其中,F2W2处理特征香气物质含量最高,明显高于其他处理,说明在本试验条件下,中等有机肥浸提液灌溉频次及高灌水量有利于甜瓜果实特征香气物质的形成。而不同处理对果实纤维素含量的影响与前两者不同,在低灌水量条件下,随着有机肥浸提液灌溉频次的增加,果实纤维素含量呈现先升高后降低的趋势;在高灌水量条件下,果实纤维素含量呈现升高的趋势。而随着灌水量的增加,果实纤维素含量明显下降。其中,F2W1处理的甜瓜果实纤维素含量最高,为1.3 mg/g,显著高于其他处理,高出8.3%~227.5%。对不同处理甜瓜果实芳香物质及纤维素含量进行隶属函数值法评价,综合排名顺序为F2W2 > F1W1 > F3W1 > F3W2 > F2W1 > F1W2。并且F2W2处理的甜瓜产量最高,达到1.8 kg/m2。  【结论】  不同有机肥浸提液灌溉频次及灌水量处理对甜瓜果实各类挥发性物质及含量的影响与对果实特征香气成分及含量的影响规律一致。在本试验条件下,F2W2处理可以同时兼顾甜瓜果实芳香物质含量、纤维素含量及产量,为较优处理组合。  相似文献   

9.
为了探究不同保鲜剂复合杀菌剂对甜瓜的保鲜效果,以西州蜜甜瓜为试验材料,研究了抑霉唑硫酸盐、ClO2、咪鲜胺、1-MCP、1-MCP复合抑霉唑硫酸盐和无菌水对甜瓜常温贮藏下品质的影响。结果表明,与对照无菌水相比,所有保鲜剂均可显著抑制甜瓜采后腐烂与失重,维持果实硬度和可溶性固形物含量,提升贮藏品质。1-MCP与1-MCP复合杀菌剂处理可显著抑制西州蜜果实的呼吸速率和乙烯释放速率,呼吸峰值较对照无菌水分别降低43.7%和37.5%,乙烯释放峰值较对照无菌水分别降低47.9%和53.7%,呼吸峰值和乙烯释放峰值出现时间均推迟3 d。其中1-MCP复合杀菌剂对果实可滴定酸和Vc含量保持效果显著,与对照无菌水相比,可滴定酸含量提高40.0%,Vc含量提高38.2%,对西州蜜甜瓜的保鲜效果最好。  相似文献   

10.
热水处理诱导香蕉采后抗病性及其对相关酶活性的影响   总被引:7,自引:2,他引:5  
该文探讨了热处理对采后香蕉果实软化、褪绿转黄、炭疽病病斑大小及相关防御酶活性变化的影响.香蕉果实用52℃热水处理10 min后在25℃下贮藏,在12 d内果实软化和褪绿转黄不明显,而未经热处理的对照果实在12d内明显软化和转黄.接种外源炭疽菌孢子可促进果实的软化和褪绿,但热处理果实的软化和褪绿速度仍然慢于对照果实.接种炭疽菌孢子后,对照果实病斑扩展迅速,而热处理果实病斑扩展缓慢.热处理导致果皮多酚氧化酶(PPO),过氧化物酶(POD)和超氧化歧化酶(SOD)活性的下降,诱导了酯氧合酶(LOX)活性大幅度提高,对苯丙氨酸解氨酶(PAL)活性影响不显著.这些结果表明,热处理可诱导采后香蕉的抗病性并具有一定延缓果实后熟的作用.该文还对香蕉果实抗病性的提高与相关防御酶活性的关系进行了讨论.  相似文献   

11.
Apple (Malus × domestica Borkh.) fruit intended for long-term storage are frequently harvested commercially before becoming fully ripe, often resulting in poor aroma development. Since postharvest calcium dips have proved effective for the enhancement of flavor-related volatile esters after cold storage of apples, this study was undertaken in order to assess whether preharvest calcium sprays (7 weekly applications at 1.6%, w/v, 81-123 days after full bloom) could also aid in improving this important attribute at harvest. This procedure significantly increased calcium content in treated fruit. The emission of aroma-related volatile esters by untreated and calcium-treated 'Fuji' apples was then monitored during maturation and ripening over two months prior to commercial harvest. Results indicate that most of the compounds contributing to overall flavor in ripe fruit were enhanced in response to preharvest calcium applications, suggesting that this procedure may be suitable for the improvement of fruit aroma at harvest. The emission of acetate esters was particularly favored, consistent with higher acetaldehyde contents in treated fruit. These effects arose apparently from increased pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities, possibly leading to a better supply of alcohols and acyl CoAs for ester biosynthesis.  相似文献   

12.
The fruit ripening traits of pawpaw [ Asimina triloba (L.) Dunal] were examined after harvest and after cold storage at -2, 2, 4, and 6 degrees C for up to 12 weeks. Generally, fruits stored at 2-4 degrees C for 4 weeks ripened normally, but those stored at -2 degrees C did not ripen normally, those stored at 6 degrees C were overripe, and by 6-8 weeks those stored at 2-4 degrees C had a lower respiration rate and ethylene production, lower firmness, and lower pH than fruit cold-stored for 4 weeks or less. These changes, and the occasional development of brown discoloration in the pulp once the fruits were moved back to room temperature, were evidence of chilling injury by 6 weeks. After harvest and through 4 weeks of cold storage, the main volatile compounds produced by fruit were methyl and ethyl octanoates and hexanoates. Volatile production significantly increased >5-fold in fruit ripened for 72 h after harvest or after removal from up to 4 weeks of cold storage. Fruit cold-stored for 6 weeks or more produced fewer total volatiles and esters but increased levels of such off-flavor compounds as ethyl acetate, ethyl propionate, and hexanoic and decanoic acids. Alcohol acyltransferase (AAT) activity declined in cold-stored fruit but was not correlated with either total volatile production or total ester production. Alcohol dehydrogenase activity did not change during ripening after harvest or cold storage. Lipoxygenase activity was highest just after harvest or after 2 weeks of cold storage, but was low by 4 weeks. Thus, ripening of pawpaw fruit seems to be limited to 4 weeks at 2-4 degrees C with loss of ability to continue ripening and chilling injury symptoms evident at colder temperatures and after longer periods of cold storage.  相似文献   

13.
d'Anjou cv. pear fruit (Pyrus communis L.) exposed at harvest to 0, 0.42, 4.2, or 42 micromol m(-)(3) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C for up to 8 months. After storage, half of the fruit was continuously exposed to ethylene (0.45 or 4-18 mmol m(-)(3)) for 7 days at 20 degrees C. All fruit treated with 1-MCP had lower respiration and ethylene production compared to untreated controls. Fruit quality changes were delayed following 1-MCP treatment, as was development of superficial scald and peel yellowing. The duration of 1-MCP-induced responses was dependent on 1-MCP treatment concentration. When 1-MCP-treated fruit began to ripen, softening and production of volatile compounds proceeded similar to that of untreated fruit. Post-storage ethylene exposure did not consistently stimulate ripening of fruit previously treated with 1-MCP. Efficacy of ethylene treatment depended on 1-MCP concentration and storage duration.  相似文献   

14.
In the present study, the effect of irradiation, storage, and freeze drying on grapefruit bioactive compounds was investigated. Grapefruits were exposed to one of two irradiation doses: 0 (control) or 300 Gy (137Cs, a proposed treatment against fruit flies) and then stored for up to 6 days. At the last storage time point (6 days after harvest), grapefruit pulp from control and irradiated fruits was freeze-dried. Bioactive compounds were extracted from Rio Red grapefruit pulp and analyzed with reverse phase liquid chromatography while volatile compounds were analyzed using gas chromatography. Freeze-dried pulp from irradiated fruits had a higher (P < or = 0.05) flavonoid content (naringin and narirutin) as compared to the freeze-dried pulp from the control fruits. Freeze-drying treatment reduced (P < or = 0.05) the lycopene content, but the reduction (P < or = 0.05) in beta-carotene content occurred only in the control fruit. Reduction in d-limonene and myrcene was observed in the irradiated fruits at 6 days after harvest and in the freeze-dried samples. These results warrant testing of the effect of postharvest treatments and processing on bioactive compounds in functional systems as they have varied effects on different bioactive compounds of grapefruit.  相似文献   

15.
The impact of 1-methylcyclopropene (1-MCP) on the synthesis and retention of flavonoid compounds during storage and ripening of red Delicious (Malus x domestica Borkh.) apples was investigated. Numerous anthocyanins, flavonols, flavan-3-ols, and a hydroxycinnamic acid from three different fruit harvest maturities were monitored after a 120 day storage and 1 week shelf life period using high-performance liquid chromatography/diode array detector analysis. The total flavonoid concentration was 5% greater in fruit treated with 1-MCP, whereas chlorogenic acid levels were 24% lower. All compounds analyzed increased in concentration during fruit harvest; however, the anthocyanins generally declined after storage, while chlorogenic acid levels increased. 1-MCP treatment resulted in the retention of anthocyanins in the latter stages of storage but did not affect the flavonols and flavan-3-ols. Chlorogenic acid biosynthesis from early and optimal fruit harvest maturities was greatly inhibited by 1-MCP during storage and the 1 week shelf life period. However, 1-MCP did not affect chlorogenic acid concentrations in late-harvested fruit. Results suggest that 1-MCP may inhibit the activity of phenylalanine ammonia-lyase and subsequent biosynthesis of flavonoid compounds. However, because very little postharvest biosynthesis of flavonoids occurs in apples, 1-MCP treatment may be useful for maintaining some of the intrinsic flavonoid levels of red Delicious apples, if applied at the proper harvest maturity.  相似文献   

16.
Changes in volatile aroma constituents of fresh-cut cantaloupe melon with storage were determined by headspace solid-phase microextraction gas chromatography-mass spectrometry. The compounds isolated from the fruit immediately after cutting were predominantly aliphatic and aromatic esters. Storage of fruit at 4 degrees C caused a considerable decrease in concentration of esters and synthesis of the terpenoid compounds beta-ionone and geranylacetone over a period of 24 h. This change in the volatile profile with storage is consistent with that of a stress-induced defense response in the cut fruit as an adaptation process to tissue exposure and cell disruption. The same effect occurred in fruit stored at 22 degrees C and in those treated with sodium azide and ascorbic acid prior to storage. Fruit treated with ascorbic acid and sodium azide had higher concentrations of beta-ionone and geranylacetone and retained these compounds better with storage time. The reduction of esters appears to be an important early reaction step in the loss of freshness during storage of fresh-cut cantaloupe.  相似文献   

17.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

18.
The effect of preharvest calcium (Ca) foliar application on ethylene (C2H4) production, respiratory rate, soluble polyuronides, and fruit firmness of ‘Bebekou’ apricot fruits was determined. The study was carried out in two experimental years, 1991 and 1992. Calcium was applied 21, 17, and 13 days before harvest for 1991 at the concentration of 0.5% calcium chloride (CaCl2) each time and 16 and 12 days before harvest for 1992 at the concentrations of 0.8 and 0.7% CaCl2, respectively. Calcium treatment resulted in a 30–76% increase in the Ca content of fruit flesh. Treated fruits had significantly lower C2H4 production rates than control during (i) four (1991) or five days (1992) at 21°C out of the 7‐day period examined immediately after harvest, and (ii) one (1991) or two days (1992) at 21°C out of the seven‐day period examined immediately after a 3rd‐ (1991) or 4th‐week (1992) storage period at 0°C. After harvest, Ca‐treated fruits displayed one day delay to reach the peak rate of C2H4 production. Respiratory rate was significantly suppressed over a five‐day period at 21°C out of the seven‐day period examined immediately after harvesting. However, after four weeks of storage at 0°C, there was not any significant effect of Ca on the respiratory rate. The respiratory peak rate occurred earlier in the control fruits compared to that of the Ca‐treated fruits at harvest time. Calcium‐treated fruits were about 70% firmer than the untreated ones at harvest time. Furthermore, this difference persisted after four weeks of storage at 0°C. Foliar‐applied Ca produced a 29% decrease in the soluble polyuronide content of the fruits at harvest time, but not after four weeks of storage. Fruit firmness was positively correlated to the Ca content of fruits while the soluble polyuronide content of the fruit was negatively correlated to fruit Ca.  相似文献   

19.
为探讨不同采收成熟度毛花猕猴桃华特果实采后贮藏品质差异,确定华特果实最佳采收期,以成熟度Ⅰ(盛花后155 d)、成熟度Ⅱ(盛花后165 d)和成熟度Ⅲ(盛花后175 d)的毛花猕猴桃华特果实为原料,研究果实采后贮藏过程中硬度、可溶性固形物(SS)含量、可滴定酸(TA)含量、抗坏血酸(AsA)含量、 腐烂率和主要挥发性成分的变化规律。结果表明,在常温贮藏20 d期间成熟度Ⅰ、Ⅱ和Ⅲ果实采后分别检出41、33和36种挥发性成分,均以醛酮类为主。其中,成熟度Ⅰ果实酯类和醛酮类相对含量较高;成熟度Ⅱ果实醛酮类、醚类、烃类相对含量较高,但酯类和醇类相对含量较低;成熟度Ⅲ果实醛酮类、酯类和醇类相对含量较高。因此,成熟度Ⅰ和Ⅱ果实采后的营养及风味品质较好,腐烂率低,贮藏性较好;成熟度Ⅲ果实尽管风味较好,但果实的营养品质较差,腐烂率高,贮藏性较差,因此建议华特果实尽量在盛花后165 d 前采收。本研究为确立毛花猕猴桃华特果实最佳采收成熟度提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号