首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
浑河上游水源地不同林型水源涵养功能分析   总被引:6,自引:3,他引:3  
为定量评价浑河上游水源地保护区内不同林型的水源涵养功能,对浑河上游5种林型(阔叶混交林、红松人工林、落叶松人工林、阔叶红松混交林和阔叶落叶松混交林)林下枯落物的现存量、持水能力、有效拦蓄量和土层的物理性质、土壤入渗性能等开展研究,并采用综合评价法对不同林型的水源涵养功能进行评价。结果表明:不同林型枯落物现存量为16.10~37.70t/hm2,有效拦蓄量为36.31~83.39t/hm2;针阔混交林枯落物有效拦蓄量高于阔叶混交林、人工针叶林,针阔混交林的半分解枯落物现存量及持水量(持水率)所占比例明显高于人工针叶林、阔叶混交林,枯落物未分解层和半分解层持水量与浸泡时间关系符合对数函数方程W=Aln t+B;土壤入渗速率随着土层深度的增加而逐渐减小,各层土壤入渗速率和时间关系符合幂函数方程F=at-b;针阔混交林的土壤非毛管孔隙度、总孔隙度、非毛管蓄水量均高于阔叶混交林、人工针叶林;针阔混交林的总蓄水量(枯落物有效拦蓄量与土壤非毛管蓄水量)最高(1 025.28~1 341.59t/hm2),其次是阔叶混交林(823.36t/hm2),人工针叶林最低(422.41~609.06t/hm2)。综上所述,浑河上游水源地保护区内针阔混交林具有较好的涵养水源能力,建议在水源涵养林培育过程中将针阔混交林作为培育目标林分,并采取适当的结构调控措施,将现有人工针叶水源涵养林调整为针阔混交林,以充分发挥森林的水源涵养功能。  相似文献   

2.
森林枯落物层和土壤层持水能力监测是评价森林水源涵养功能优劣与否的两个重要环节。为了更直观、简便、科学、合理地对滇中城市水源地不同林型水源涵养功能进行评价,以森林不同林型枯落物持水量、土壤层理化特性及土壤持水能力研究为基础,选取影响林地枯落物层和土壤层持水功能的17个代表性评价指标,建立滇中城市水源地不同林型水源涵养功能评价指标体系。运用欧式贴近度的概念及模糊物元模型,构建基于欧式贴近度的模糊物元模型,并以楚雄市九龙甸水源地4种不同林型(混交林、人工桉树林、灌木林、青冈栎林)为例进行实证研究,得到欧式贴近度大小顺序为:R混交林 > R青冈栎林 > R灌木林 > R人工桉树林,表明混交林综合水源涵养功能最好,其次为青冈栎林和灌木林,人工桉树林最差。  相似文献   

3.
红壤侵蚀区几种水土保持林水文效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
水土保持林对天然降雨起着截流、吸收的作用。系统研究了试验区内马尾松林、湿地松林、板栗林以及马尾松+板栗混交林的冠层、枯落物层及土壤层的水文效应。结果发现,不同林分在这3个方面均表现出差异。(1)林冠层截留量针叶林大于阔叶林,针阔混交林居中,其顺序为:湿地松林〉马尾松林〉针阔混交林〉板栗林。(2)林下枯落物层有效拦蓄量和土壤蓄水功能阔叶林大于针叶林,针阔混交林居中,其顺序为:板栗林〉针阔混交林〉马尾松林〉湿地松林。通过3个层次水文效应研究,揭示出营造和经营管理水土保持林时,应促使3个水文层次功能的同时优化,尽量营造针阔混交林,增加植被层次结构的复杂性,既要发挥针叶林林冠层截留效应,又要发挥阔叶林枯落物层和土壤层的涵养水源功能。  相似文献   

4.
莲花湖库区水源涵养林水文效应的研究   总被引:5,自引:0,他引:5  
对莲花湖库区流域人工林主要林型的降水截持效益、林地和荒草地枯落物层持水性能、土壤层物理性状及其蓄水效益进行了研究。结果表明:红松人工林、兴安落叶松人工林和杂木林林冠截留率分别为34.83%,13.05%,19.61%,树干茎流率分别为6.79%,0.58%,4.01%,穿透率分别为58.37%,86.18%,77.66%。林冠截留量、茎流量、穿透率与降水量均呈显著的正相关,并分别给出了它们之间的经验模型。枯落物层最大持水量变化范围为12.024.0 t/hm2,其大小顺序为红松林>兴安落叶松林>杂木林>荒草地。有效拦蓄量变化范围为2.9445.97 t/hm2,排序为红松林>兴安落叶松林>杂木林>荒草地。几种主要林型和荒草地有效拦蓄率变化范围为53.45e.95%,排序为红松林>杂木林>兴安落叶松林>荒草地。各林型土壤最大蓄水量变化范围为1 838.62 186.3 t/hm2,依次为兴安落叶松林>杂木林>红松林>荒草地。土壤非毛管蓄水量为16.2625.28 mm,依次为兴安落叶松林>红松林>杂木林>荒草地。林地土壤入渗速率显著高于荒草地。从土层厚度来说,土壤入渗速率随土层厚度的下移表现出逐步降低的趋势,即空间特征表现出土层上部>中部>下部。本试验为研究森林的水源涵养功能以及进一步综合评价该地区的森林生态功能提供了重要的科学依据。  相似文献   

5.
阿什河上游小流域主要林分类型土壤水文功能研究   总被引:6,自引:1,他引:5  
通过对阿什河上游小流域6种具有代表性的林分类型土壤特性及水源涵养功能的研究,结果表明:枯落物层厚度为2.8~5.5cm;总蓄积量为9.27~39.81t/hm2;最大持水量为25.65~136.83t/hm2;有效拦蓄量为17.17~67.00t/hm2。6种林分的枯落物层的水文功能排序为兴安落叶松林>针阔混交林>红松林>蒙古栎林>樟子松林>水曲柳林。土壤层容重均值的变化范围为0.97~1.26g/cm3;总孔隙度变动范围为50.16%~60.19%;土壤最大持水量为1 949.51~2 293.74t/hm2;有效持水量为234.66~438.56t/hm2;6种林分土壤层的水文功能排序为蒙古栎林>水曲柳林>兴安落叶松林>针阔混交林>樟子松林>红松林。地表层(包括枯落物层与土壤层)最大持水量变化范围在1 991.89~2 357.31t/hm2之间,排序为兴安落叶松林>蒙古栎林>水曲柳林>针阔混交林>樟子松林>红松林;有效持水量变化范围是264.80~455.73t/hm2,排序为水曲柳林>针阔混交林>兴安落叶松林>蒙古栎林>樟子松林>红松林。  相似文献   

6.
大伙房水库流域不同植被类型枯落物层和土壤层水文效应   总被引:11,自引:6,他引:5  
为了研究大伙房水库流域森林生态系统枯落物层和土壤层水文效应,以流域内3种不同植被类型为研究对象,采用浸泡法、环刀法对其枯落物层和土壤层水文功能进行定量研究。结果表明:(1)3种植被类型枯落物蓄积量为23.20~39.11t/hm~2,表现为刺槐天然次生林油松人工林落叶松人工林,且阔叶林枯落物半分解层蓄积量大于未分解层,而针叶林则相反。(2)枯落物层最大持水量为50.24~109.19t/hm~2,有效拦蓄量为41.70~90.71t/hm~2,均表现为刺槐天然次生林油松人工林落叶松人工林,刺槐天然次生林枯落物层持水功能较好。(3)枯落物未分解层、半分解层分别在浸水10,8h基本达到饱和,持水量与浸水时间呈明显对数关系(R20.91);枯落物在浸水1h内吸水速率变化最大,4h左右吸水速率明显减缓,吸水速率与浸泡时间呈明显幂函数关系(R20.93)。(4)3种植被类型土壤容重均值变化范围为1.10~1.25g/cm~3,总孔隙度变化范围为27.96%~30.19%,土壤有效持水量变化范围为21.11~29.39t/hm~2,不同植被类型土壤层持水能力表现为刺槐天然次生林油松人工林落叶松人工林,土壤入渗速率与入渗时间呈明显幂函数关系(R20.90)。综合3种植被类型枯落物层及土壤层水文功能表明刺槐天然次生林的水源涵养功能较强,建议在该流域加强天然次生林的保护和恢复。  相似文献   

7.
北川河流域典型林型水源涵养能力评价   总被引:2,自引:0,他引:2  
森林是水源涵养功能的基础和载体,青海省北川河流域森林覆盖较好,但当前流域内林地的水源涵养情况尚不清楚.本研究选取青海云杉、白桦、华北落叶松、沙棘和青杨这5种在流域内典型树种,对林冠层、枯落物层和土壤层的10个与水源涵养功能密切相关的指标进行流域森林水源涵养分析评价,同时采用层次分析法获得各林种和各指标的权重.结果显示:在林冠层的比较中,青海云杉和白桦的水源涵养能力最佳,华北落叶松次之,沙棘和青杨居末;但在枯落物层的比较中,华北落叶松、白桦和青海云杉的水源涵养能力较好,青杨居中,沙棘表现最差;而在土壤层的比较中,青海云杉和白桦同样水源涵养能力较好,沙棘居中,青杨和华北落叶松较弱.同时,在利用层次分析法检验得到:青海云杉权重最高,达到25%,另外土壤层的水源涵养能力占林冠、枯落物和土壤这3层比重最大,为70.51%.综合林冠、枯落物、土壤和层次分析比较结果,当前水源涵养能力排序为:青海云杉林地>白桦林地>华北落叶松林地>沙棘林地>青杨林地.这一结果为进一步讨论流域内植被景观格局和空间优化配置提供了参考和理论依据.  相似文献   

8.
为了研究沿坝地区3种典型林分的枯落物层与土壤层的水源涵养能力,利用熵权法对林分的枯落物层和土壤层的相关因子进行了综合评价。结果表明:(1)枯落物层最大持水量:针阔混交林油松林落叶松纯林;有效拦蓄量:针阔混交林油松林落叶松纯林。(2)持水量与浸水时间的回归方程为Q=alnt+b(R~20.97),持水速率与浸水时间的回归方程为V=Kt~n(R~20.94)。(3)3种林分类型土壤总孔隙度的排序为:针阔混交林油松纯林落叶松纯林;土壤持水能力大小排序为:针阔混交林落叶松纯林油松纯林;3种林分土壤层的初渗速率差距比较大,大小排序为:针阔混交林落叶松纯林油松纯林;林分的稳渗速率大小排序为:针阔混交林落叶松纯林油松纯林;入渗速率与入渗时间回归方程为:f=at~(-b)(R0.96)。(4)利用熵权法计算得出的权重大小排序为:枯落物最大持水量枯落物有效拦蓄量=土壤持水力初渗速率土壤毛管孔隙度土壤容重枯落物蓄积量=土壤非毛管孔隙度,3种林分类型综合评分排序为:针阔混交林油松纯林落叶松纯林。针阔混交林为最优的水源涵养林,其在保持水土、涵养水源方面功能最强。  相似文献   

9.
浑河上游典型水源涵养林降雨再分配过程   总被引:3,自引:1,他引:2  
为明确浑河上游典型水源涵养林的降雨再分配过程,以浑河上游地区5种典型水源涵养林(红松人工林、落叶松人工林、红松混交林、落叶松混交林、阔叶混交林)为研究对象,应用自记式观测记录仪,分析不同林型林冠层对降水再分配过程(穿透雨、树干茎流、林冠截留)的影响。结果表明:各林型穿透雨量(率)、树干茎流量(率)、林冠截留量均随林外降雨量增加而增大;穿透雨量、树干茎流量、林冠截留量均与林外降雨量呈显著的线性正相关;各林型穿透雨率、树干茎流率与林外降雨量呈显著的对数函数关系;红松混交林、落叶松混交林的树干茎流率(32.12%,15.44%)均高于阔叶混交林与红松、落叶松人工林,红松、落叶松人工林的林冠截留能力(80.66%,77.47%)高于阔叶混交林、针阔混交林。该结果为浑河上游地区水源涵养林的最优空间结构配置与经营管理提供科学依据。  相似文献   

10.
关帝山不同植被恢复类型土壤抗蚀性研究   总被引:1,自引:1,他引:0  
对关帝山4种植被恢复类型(包括云杉-落叶松-杨桦针阔混交林(简称针阔混交林)、杨桦阔叶林、沙棘灌木林和华北落叶松林)和撂荒地(对照)0-20cm土层土壤抗蚀性进行研究。结果表明,与撂荒地相比,不同植被恢复类型土壤抗蚀性均明显增强(P0.05),各种恢复林地土壤有机碳含量、0.25mm风干及水稳性团聚体含量均明显增加,水稳性团聚体平均重量直径(MWD湿)和水稳性指数均显著增大,团聚体结构破坏率和土壤容重显著减小;同时,植被恢复也改善土壤微团聚状况,使分散率降低,团聚度增加。采用主成分分析法,确定土壤抗蚀性评价指标的3个主成分,并确定土壤抗蚀性的综合评价模型,即Y=0.718Y1+0.167Y2+0.115Y3,依据土壤抗蚀性综合主成分值,得出土壤抗蚀性强弱顺序为:针阔混交林(2.621)杨桦阔叶林(1.204)沙棘灌木林(-0.159)华北落叶松林(-1.056)撂荒地(-2.609)。建议在该区进行生态修复的营林过程中,加强对人工林的抚育管理,以增强其水源涵养和水土保持功能。  相似文献   

11.
托木尔峰自然保护区台兰河上游森林植被水源涵养功能   总被引:5,自引:1,他引:4  
为定量评价托木尔峰自然保护区森林的水源涵养能力,利用综合蓄水能力法,对台兰河上游雪岭云杉森林生态系统的林冠层截留量(C)、枯枝落叶层持水量(L)、土壤层蓄水量(S)及综合水源涵养能力进行估算和分析。结果表明:(1)研究区4样地中,林冠层截留量表现为中海拔云杉林(29.94mm)较高海拔云杉林(20.56mm)高海拔云杉林(11.72mm)低海拔云杉杨树混交林(5.84mm),而茎流量则与之相反。(2)除中海拔云杉林外,各样地枯枝落叶未分解层平均厚度均大于半分解层;其中,未分解层的平均蓄积量中高海拔云杉林最大(79.32t/hm~2),半分解层为中海拔云杉林最大(59.47t/hm~2)。整体来看,枯枝落叶层的最大持水量大小依次为中海拔云杉林(32.55mm)高海拔云杉林(31.05mm)较高海拔云杉林(30.78mm)低海拔云杉杨树混交林(12.84mm)。(3)4样地平均土壤容重变动范围为0.73~1.06g/cm~3;土壤孔隙度的平均值大小均为中海拔云杉林较高海拔云杉林高海拔云杉林低海拔云杉杨树混交林;林下土壤自然含水率随海拔高度的增加呈不断上升趋势。不同样地30cm深土层的非毛管孔隙持水量表现为:中海拔云杉林(37.6mm)较高海拔云杉林(30.7mm)高海拔云杉林(25.73mm)低海拔云杉杨树混交林(13.92mm)。(4)研究区森林生态系统的水源涵养能力在171.27~280.84mm之间,低海拔云杉杨树混交林的总持水量最小,中海拔云杉林最大。土壤层水源涵养贡献率最大,占比在77.75%~89.10%之间;总有效蓄水量虽远小于总持水量,但能够很好地发挥水源涵养功能和水土保持作用。  相似文献   

12.
为了研究托木尔峰自然保护区生态系统的水源涵养功能,选择台兰河上游为研究区域,采用野外观察与室内试验相结合的方法,分别对该区域具有代表性的雪岭云杉林、灌木林、草地植被,从林冠层、枯枝落叶层和土壤层3个层次及综合性的水源涵养能力进行了定量分析。结果表明:研究区云杉林林冠截留能力优于灌木林,穿透降雨量及林冠截留量平均值均大于灌木林。除草地外,各样地枯枝落叶未分解层平均厚度均大于半分解层,云杉林枯枝落叶层的厚度和蓄积量明显大于灌木林,不同植被类型枯枝落叶半分解层的自然持水率、最大持水率均高于未分解层,云杉林枯枝落叶层自然持水率、最大持水率均高于灌木林,灌木林和云杉林的枯枝落叶未分解层有效拦蓄量均高于半分解层。不同植被类型平均土壤容重大小表现为草地灌木林云杉林,土壤孔隙度的平均值大小则与之相反;不同植被类型的土壤自然含水率、饱和含水量及非毛管持水量均表现为云杉林灌木林草地,而不同植被类型30cm深土层的蓄水能力变化则存在差异。研究区不同植被类型的水源涵养能力在181.06~237.63mm,综合、有效水源涵养能力均表现为云杉林灌木林草地,其中土壤层的涵养贡献率最大,总有效蓄水量远小于总持水量。综上所述,台兰河上游云杉林和灌木林具有较好的涵养水源能力,放牧强度和人为干扰是影响研究区不同植被类型尤其是生境脆弱的草地植被水源涵养功能的重要因素。  相似文献   

13.
燕山北部山地典型植物群落水源涵养能力研究   总被引:3,自引:1,他引:2  
对燕山北部山地常见的几种植物群落类型的水源涵养能力进行了比较研究。结果表明,凋落物截留量在地上植被层总截留量中占有最大比例,地上植被的截留量由高到低的顺序为:人工落叶松林(4.39mm)>天然次生杨桦林(3.81mm)>榛子灌丛(1.70mm)>绣线菊灌丛(0.18mm);土壤最大持水量及总孔隙度都以榛子灌丛为最大,其次分别为天然次生杨桦林、人工落叶松林和绣线菊灌丛。土壤渗透速率以天然次生杨桦林为最大,榛子灌丛与人工落叶松林相近,绣线菊灌丛最低;群落水源涵养总量由高到低的顺序为:榛子灌丛(272.52mm)>天然次生白桦林(239.61mm)>人工落叶松林(221.53mm)>绣线菊灌丛(194.85mm)。地上植被层截留量在水源涵养总量中所占比例较小,但截留量不能完全说明其对水源涵养功能的影响。说明在燕山北部山地,天然次生杨桦林和榛子灌丛具有良好的水源涵养能力,绣线菊灌丛水源涵养能力较差,需采取合理措施对该地区大面积分布的绣线菊灌丛进行改造,以提高其水源涵养能力。  相似文献   

14.
赣南丘陵区典型林分水源涵养功能评价   总被引:2,自引:2,他引:0  
[目的]明确不同林分类型整体水源涵养能力的差异性,为赣南丘陵区水源涵养功能和生态系统服务的恢复提供理论依据。[方法]以赣南丘陵区江西省赣州市崇义县境内两种主要天然林(楠木和毛竹),以及两种典型人工经济果林地(脐橙和茶)为研究对象,利用水浸法和双环法对林分的枯落物层与土壤层的持水性进行测定,同时利用熵权法对枯落物层和土壤层的相关指标进行综合评价。[结果]①4种林分枯落物层蓄积量、最大持水量和有效拦蓄量范围分别为9.19~16.70,13.43~31.02,6.99~14.08 t/hm2;土壤非毛管孔隙度、有效持水量和最大持水量均值范围分别为5.80~10.05%,57.98~100.50,447.76~580.17 t/hm2,均为楠木林最大,茶林最小。②4种林地土壤初渗速率与稳渗速率变化趋势相一致,排列顺序为:毛竹林>楠木林>茶林>脐橙林。③在4种林分水源涵养能力综合评分中,两种天然林要高于两种经济果林。④土壤稳渗速率是影响林分整体水源涵养能力最显著的指标,其次为枯落物最大持水量和有效拦蓄量,而土壤容重的影响最低。[结论]赣南丘陵区两种天然林水源涵养能力高于两种经济果林,而该区域人工经济果林水源涵养能力的大幅度降低将进一步导致土地退化,加速水土流失,是区域可持续发展的重要生态风险隐患之一。  相似文献   

15.
太行山区主要森林生态系统水源涵养能力   总被引:9,自引:1,他引:8  
森林生态系统水源涵养功能是林冠层、枯落物层和土壤层对大气降水进行再分配的过程。本文通过文献收集整理太行山地区森林植被林冠一次降水截留量、枯落物层持水量和土壤层贮水量数据,分析该地区主要森林植被对降水的截留和贮蓄能力,采用综合蓄水能力法对森林植被的综合涵养水源能力进行评价,旨在为合理经营和管理森林生态系统提供依据。结果表明:1)土壤非毛管孔隙度与生态系统综合持水量呈正相关,且最大持水量占整个森林生态系统综合持水量的90%以上,表明土壤层作为森林生态系统水文效应最重要的一层,是整个森林系统水分循环的主要贮蓄库和调节器;2)针叶林中油松和侧柏的冠层一次降水截留量显著高于其他林型,其林冠结构更加适应该地区气象条件,林冠层降水再分配能力也优于其他林型;3)混交林郁闭度低,有利于林下灌、草丛的生长,其枯落物现存量比纯林和人工林更高,虽然林冠一次截留量低但林下具有丰富的枯落物层而更易涵养水源;4)天然林综合蓄水能力整体高于人工林,侧柏人工林和油松人工林综合蓄水能力仅次于刺槐、侧柏和油松天然林。综上可见,合理利用森林资源防止水土流失、天然林长期封育和合理控制优势树种密度及增加植被覆盖率对太行山地区植被恢复和生态建设具有重要意义。为提高该区综合水源涵养能力,可增加乡土树种油松和侧柏人工林的种植面积。  相似文献   

16.
赣南地区稀土矿采矿迹地枯落物层和土壤层贮水功能研究   总被引:1,自引:1,他引:0  
为探究赣南废弃稀土矿区土壤水源涵养功能,对其采矿迹地枯落物层和土壤层贮水功能采用环刀法进行研究。结果表明,不同采矿迹地0—30cm土层土壤含水量平均值表现为天然林地(180.37g/kg)>堆积地(170.67g/kg)>挖矿地(86.36g/kg);土壤容重平均值表现为堆积地(1.54g/cm^3)>挖矿地(1.31g/cm^3)>天然林地(1.20g/cm^3);土壤毛管孔隙度平均值表现为天然林地(44.08%)>堆积地(37.89%)>挖矿地(35.82%);土壤毛管蓄水量平均值表现为天然林地(440.77t/hm^2)>堆积地(378.94t/hm^2)>挖矿地(358.20t/hm^2)。土壤最大蓄水量的表现与土壤毛管蓄水量相似。不同采矿迹地涵养水源能力天然林地最强,其单位面积蓄水量为(561.34±44.32)t/hm^2,挖矿地最差,其值为(431.65±53.66)t/hm^2。由此可见,天然林地土壤水源涵养功能强于各采矿迹地,稀土矿区采矿作业对枯落物层和土壤层贮水功能影响较大。  相似文献   

17.
太行山不同林型枯落物持水性及生态水文效应研究   总被引:7,自引:0,他引:7  
研究了太行山不同林型枯落物物持水性及生态水文效应,结果表明:(1)灌丛和混交林未分解层占总厚度的一半以上,阔叶林和针叶林半分解层占总厚度的一半以上;枯落物总蓄积量大小排序为针叶林>混交林>阔叶林>灌丛,不同林型半分解层蓄积量均占总蓄积量一半以上,表明了高海拔枯落物分解速度比低海拔枯落物分解速度快。(2)不同林型枯落物半分解层和未分解层最大持水量、最大持水率、有效拦蓄率、有效拦蓄量和自然含水率随海拔的增加而增加,基本表现为针叶林>阔叶林>混交林>灌丛,并且未分解层高于半分解层;针叶林枯落物有效拦蓄能力最强,灌丛最弱,即高海拔拦蓄能力较强,低海拔较弱。(3)土壤容重随着海拔的增加而降低,依次表现为灌丛>混交林>阔叶林>针叶林;土壤总孔隙度、非毛管孔隙度和毛管孔隙度随海拔的增加而降低,其中毛管孔隙度在不同林型差异均不显著(p > 0.05);土壤饱和含水量、有效调蓄空间、最大持水率、最大持水量和有效持水量随海拔的增加而增加,依次表现为针叶林>阔叶林>混交林>灌丛。(4)不同林型初渗速率与稳渗速率存在较好的幂函数关系,相关性分析结果显示土壤渗透性能与总孔隙度和非毛管孔隙度均为极显著正相关关系(p < 0.01),其中,非毛管孔隙状况对土壤渗透性的影响更为显著。综合分析表明:太行山森林水源涵养能力随海拔的增加而增加。  相似文献   

18.
阴山北麓不同林分类型枯落物层持水性能研究   总被引:7,自引:0,他引:7  
为了充分了解研究区不同林分类型枯落物的持水能力及对涵养水源和保育土壤的影响,以武川县公益林11种林分类型为研究对象,通过野外观测、室内浸水法对不同林分类型的枯落物蓄积量、最大持水量、最大持水率、吸水速率和有效拦蓄量进行了研究。结果表明:(1)不同林地类型总蓄积量为0.74~5.09 t/hm2,落叶松林蓄积量最大,樟子松林最小。天然林的蓄积量大于人工林,半分解层蓄积量均大于未分解层。(2)各林分类型的持水量存在显著差异(p<0.05),呈现随时间的变化而先增大后减小的趋势,4 h内持水量变化较大,8 h后持水量变化相对平稳,24 h后各林地枯落物达到最大持水量,落叶松(8.5 t/hm2)最大,樟子松林(0.99 t/hm2)最小。(3)各林地枯落物吸水速率趋势相同,天然林吸水速率较大,其次油松人工林,灌木林吸水速率最差。(4)在各林分类型中,落叶松林蓄积量最大,最大持水量最高,对降水的有效拦蓄量也最好(9.051 t/hm2);油松、山杏混交林(2.847 t/hm2)次之。综合比较,落叶松等天然林的持水能力最好,油松人工林枯落物的持水能力次之,柠条、山杏灌木林持水能力较弱。  相似文献   

19.
南亚热带杉木林改造对土壤及凋落物持水能力的影响   总被引:1,自引:0,他引:1  
对杉木林进行改造,是提高林分质量和生态效能的重要措施。该文研究了杉木林改造前期对土壤及凋落物持水能力的影响。结果表明,在杉木林改造前期,不同林龄段试验林间土壤容重、孔隙度和土壤持水量差异不显著(P > 0.05),但随林龄的增加呈上升趋势,土壤涵养水源能力有所增加。凋落物量及其持水能力随改造林龄的增加呈上升趋势,9~11 a林龄试验林凋落物及持水能力显著高于3~5 a林龄试验林(P < 0.05),而其凋落物持水能力与5~7 a林龄试验林差异不显著(P > 0.05)。浸水试验表明,凋落物持水率随浸泡时间的增加呈对数曲线增长,吸水速率与浸泡时间呈反函数关系。凋落物最大持水量远小于土壤最大持水量,仅为土壤的0.18%,0.11%和0.08%,土壤为森林涵养水源的主体。通过分析试验林土壤和凋落物持水能力发现,杉木+米老排+阴香+山杜英+枫香、杉木+火力楠+米老排+阴香+红荷和杉木+木荷+山杜英+香椿+山黄麻改造模式对土壤和凋落物持水能力影响效果较好,其水文功能较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号