首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
托木尔峰自然保护区台兰河上游森林植被水源涵养功能   总被引:5,自引:1,他引:4  
为定量评价托木尔峰自然保护区森林的水源涵养能力,利用综合蓄水能力法,对台兰河上游雪岭云杉森林生态系统的林冠层截留量(C)、枯枝落叶层持水量(L)、土壤层蓄水量(S)及综合水源涵养能力进行估算和分析。结果表明:(1)研究区4样地中,林冠层截留量表现为中海拔云杉林(29.94mm)较高海拔云杉林(20.56mm)高海拔云杉林(11.72mm)低海拔云杉杨树混交林(5.84mm),而茎流量则与之相反。(2)除中海拔云杉林外,各样地枯枝落叶未分解层平均厚度均大于半分解层;其中,未分解层的平均蓄积量中高海拔云杉林最大(79.32t/hm~2),半分解层为中海拔云杉林最大(59.47t/hm~2)。整体来看,枯枝落叶层的最大持水量大小依次为中海拔云杉林(32.55mm)高海拔云杉林(31.05mm)较高海拔云杉林(30.78mm)低海拔云杉杨树混交林(12.84mm)。(3)4样地平均土壤容重变动范围为0.73~1.06g/cm~3;土壤孔隙度的平均值大小均为中海拔云杉林较高海拔云杉林高海拔云杉林低海拔云杉杨树混交林;林下土壤自然含水率随海拔高度的增加呈不断上升趋势。不同样地30cm深土层的非毛管孔隙持水量表现为:中海拔云杉林(37.6mm)较高海拔云杉林(30.7mm)高海拔云杉林(25.73mm)低海拔云杉杨树混交林(13.92mm)。(4)研究区森林生态系统的水源涵养能力在171.27~280.84mm之间,低海拔云杉杨树混交林的总持水量最小,中海拔云杉林最大。土壤层水源涵养贡献率最大,占比在77.75%~89.10%之间;总有效蓄水量虽远小于总持水量,但能够很好地发挥水源涵养功能和水土保持作用。  相似文献   

2.
秦巴山区植被涵养水源价值测评研究   总被引:25,自引:6,他引:25  
李晶  任志远 《水土保持学报》2003,17(4):132-134,138
根据陕西省植被图,在MapInfo4.0上建立秦巴山区植被类型数据库,从林冠层、枯枝落叶层、土壤层3个层次分析了秦巴山区植被水源涵养的物质量,并利用影子工程法、成本估算法等方法对其生态功能进行了货币化评定。结果表明林冠层的截留量为109891.62万t,枯枝落叶层的截留量为31960.44万t,土壤层的截留量为196309.35万t,3个层次总截留量为338161.42万t,水源涵养总价值量为226.56×108元。这对于本地区水资源的合理利用以及生态环境建设有着积极的作用。  相似文献   

3.
森林保持水土涵养水源的效应及评价   总被引:5,自引:0,他引:5  
森林保持水土、涵养水源的作用层次主要是林冠和林下植被层、枯枝落叶层、根系土壤层,通过这三个层次对降水进行调节,具有截持降水、增加降水入渗、改善土壤性质、吸收和阻延地表径流、抑制土壤蒸发、固土护坡等功能,从而有效避免土壤溅蚀、增强土壤抗冲能力、涵养水源并预防地质灾害的发生。枯枝落叶层是森林保持水土的重要力量。完整的森林系统不会加重水土流失。在干旱的季节或年份,森林会加重土壤干旱的说法缺乏科学依据。  相似文献   

4.
选取吉林省辽河流域6种样地类型(阔叶林、针叶林、针叶混交林、灌木林、草地、农田),研究不同植被类型土壤在0~60 cm深度的结构特征、持水能力和渗透能力,并综合评价不同植被类型土壤的水源涵养能力,为营建水源涵养林提供支撑。结果表明:(1)除农田外其他样地类型土壤的容重随着土层深度的增加而变大,土壤总孔隙度和毛管孔隙度随着土层深度的增加而减小;(2)不同植被类型土壤的持水能力表现为阔叶林>针阔混交林>针叶林>灌木林>草地>农田,土壤渗透能力表现为针阔混交林>针叶林>灌木林>阔叶林>草地>农田;(3)不同植被类型土壤的水源涵养能力为阔叶林>针阔混交林>针叶林>灌木林>草地>农田,吉林省辽河流域内阔叶林的水源涵养能力最优,农田的水源涵养能力最差,退耕还林工程可以提高土壤的水源涵养能力。  相似文献   

5.
赤水河上游主要森林类型水源涵养功能评价   总被引:11,自引:4,他引:7  
以赤水河上游10种主要森林类型为对象,定量评价其土壤层、枯落物层和林冠层的水源涵养能力。结果表明,枯落物储量为3.24~16.13t/hm2,有效拦蓄深为0.66~2.38mm,最大失水深为0.14~0.88mm,分解越彻底则蓄水能力越强。土壤层有效持水深为14.35~54.41mm,表现为阔叶林、针阔混交林优于针叶林,并随土层深度增加而降低。土壤层与枯落物层的持水速率均大于失水速率,在1~2h下降快,后期下降慢,与时间呈幂函数关系。阔叶林林冠截留率高于针叶林,可用林外降雨量和林内穿透雨量预测林冠截留量。水源涵养能力主要受枯落物储量、有效拦蓄深、最大失水深和土壤容重、饱和持水量影响,据此将10种森林类型划分为低持水(柏木林、撑绿竹林和火棘+荚蒾林)、中低持水(杉木林、马尾松+杉木林)、中持水(马尾松+柏木林、马尾松-白栎林)和高持水(丝栗栲林、白栎林和马尾松林)4种类型。综合分析表明恢复森林水源涵养功能的核心是调整林冠组成和结构。  相似文献   

6.
冀西北地区4种纯林枯落物及土壤水文效应   总被引:6,自引:0,他引:6  
为改善冬奥会赛区(张家口市崇礼区清水河流域)水生态环境,提高(崇礼)赛区森林涵养水源功能,以崇礼区和平林场的云杉、白桦、山杨和华北落叶松4种纯林为研究对象,布设50m×50m样地,枯落物水文效应测定采用浸泡法,土壤层水文效应测定采用环刀法。结果表明:(1)枯落物总蓄积量最大为云杉林(38.46t/hm~2),各林分半分解层的蓄积量均大于未分解层;(2)枯落物最大持水量云杉林(3.03t/hm~2)最大,有效拦蓄量云杉林(2.57t/hm~2)最大,最大持水率山杨林(384.22%)最大,枯落物持水量与持水时间呈对数关系,枯落物吸水速率与持水时间呈幂函数关系;(3)土壤容重华北落叶松林(1.00g/cm~3)最大,山杨林(0.67g/cm~3)最小,土壤总孔隙度白桦林(67.14%)最大,山杨林(58.77%)最小。土壤入渗速率与入渗时间呈明显的幂函数关系。(4)林地总持水能力排序为:白桦林(887.45t/hm2)华北落叶松林(840.94t/hm~2)云杉林(800.03t/hm~2)山杨林(768.58t/hm~2),土壤层的持水能力占99%以上。综合分析得知,阔叶林涵养水源功能优于针叶林,土壤层的持水能力强于枯落物层。  相似文献   

7.
杉木米老排混交林水源涵养功能的研究   总被引:4,自引:0,他引:4  
本通过对杉木米老排混交林和杉木纯林的林冠层、林下植被层、枯枝落叶层和土壤层持水能力进行研究,结果表明:由于米老排落叶量大,根系发达,大大改善了土壤结构,提高了林分的水源涵养功能。除了林冠层持水量外,混交林各部分涵养水源功能均优于杉木纯林,地上、地下部分持水量分别为27.21t/hm^2和2347.94t/hm^2,分别比纯林的(24.74t/hm^2)和(2073.81t/hm^2)高出9.98%和13.22%。  相似文献   

8.
太行山区主要森林生态系统水源涵养能力   总被引:9,自引:1,他引:8  
森林生态系统水源涵养功能是林冠层、枯落物层和土壤层对大气降水进行再分配的过程。本文通过文献收集整理太行山地区森林植被林冠一次降水截留量、枯落物层持水量和土壤层贮水量数据,分析该地区主要森林植被对降水的截留和贮蓄能力,采用综合蓄水能力法对森林植被的综合涵养水源能力进行评价,旨在为合理经营和管理森林生态系统提供依据。结果表明:1)土壤非毛管孔隙度与生态系统综合持水量呈正相关,且最大持水量占整个森林生态系统综合持水量的90%以上,表明土壤层作为森林生态系统水文效应最重要的一层,是整个森林系统水分循环的主要贮蓄库和调节器;2)针叶林中油松和侧柏的冠层一次降水截留量显著高于其他林型,其林冠结构更加适应该地区气象条件,林冠层降水再分配能力也优于其他林型;3)混交林郁闭度低,有利于林下灌、草丛的生长,其枯落物现存量比纯林和人工林更高,虽然林冠一次截留量低但林下具有丰富的枯落物层而更易涵养水源;4)天然林综合蓄水能力整体高于人工林,侧柏人工林和油松人工林综合蓄水能力仅次于刺槐、侧柏和油松天然林。综上可见,合理利用森林资源防止水土流失、天然林长期封育和合理控制优势树种密度及增加植被覆盖率对太行山地区植被恢复和生态建设具有重要意义。为提高该区综合水源涵养能力,可增加乡土树种油松和侧柏人工林的种植面积。  相似文献   

9.
工程堆积体上不同植被类型枯落物和土壤水文效应   总被引:1,自引:1,他引:0  
为探讨工程堆积体不同植被类型的枯落物特征、枯落物持水及拦蓄能力、土壤物理性状和土壤涵水性能,采用室内浸水法和环刀法分别对工程堆积体植被与原生植被的枯落物及0—20 cm土层的持水能力进行研究。结果表明:(1)不同植被类型枯落物厚度及蓄积量均存在显著差异(P0.05),原生乔木林、乔木林、灌木林、草地枯落物厚度依次为3.76,2.89,2.67,1.23 cm,蓄积量分别为5.95,3.86,3.19,0.65 t/hm~2。枯落物未分解层厚度、蓄积量均大于半分解层。(2)各植被类型土壤容重与毛管孔隙度范围分别在1.19~1.25 g/cm~3和41.58%~46.13%,原生乔木林土壤容重小于乔木林,而土壤毛管孔隙度大于乔木林。堆积体各植被类型土壤毛管孔隙度大小依次为草地灌木林乔木林。(3)各植被类型土壤最大持水量及毛管持水量均存在显著差异(P0.05),土壤最大持水量与毛管持水量范围分别为44.31~46.23,34.07~37.98 g/cm~3,均呈现原生乔木林最高,乔木林最低。(4)枯落物持水量随时间呈对数关系,吸水速率随时间呈幂函数关系,其吸水速率在0.5 h最高,在4.0 h下降,12 h最大持水量达饱和,吸水速率接近于0。(5)原生乔木林枯落物最大持水率、有效拦蓄率均大于乔木林,工程堆积体各植被类型最大持水率及有效拦蓄率表现为草地灌木林乔木林。从堆积体枯落物和土壤持水能力角度来看,草灌混交这一搭配模式可以作为工程堆积体的先锋植被,用于在堆积体初期构建稳定群落生态结构。研究结果可为工程堆积体开展水土保持治理措施和植被恢复提供理论依据。  相似文献   

10.
 从林冠层、林下植被层、枯枝落叶层和土壤层研究木荷和杉木人工林涵蓄水分以及土壤入渗能力的差异。结果表明,木荷人工林地上部分(含林冠层、林下植被层和枯枝落叶层)的持水能力低于杉木人工林,仅为杉木人工林的76.36%,但1m深表土层的饱和贮水量为5039.5t/hm2,比杉木人工林高323.3t/hm2,同时木荷人工林土壤渗透性能也好于针叶林。  相似文献   

11.
燕山北部山地典型植物群落水源涵养能力研究   总被引:3,自引:1,他引:2  
对燕山北部山地常见的几种植物群落类型的水源涵养能力进行了比较研究。结果表明,凋落物截留量在地上植被层总截留量中占有最大比例,地上植被的截留量由高到低的顺序为:人工落叶松林(4.39mm)>天然次生杨桦林(3.81mm)>榛子灌丛(1.70mm)>绣线菊灌丛(0.18mm);土壤最大持水量及总孔隙度都以榛子灌丛为最大,其次分别为天然次生杨桦林、人工落叶松林和绣线菊灌丛。土壤渗透速率以天然次生杨桦林为最大,榛子灌丛与人工落叶松林相近,绣线菊灌丛最低;群落水源涵养总量由高到低的顺序为:榛子灌丛(272.52mm)>天然次生白桦林(239.61mm)>人工落叶松林(221.53mm)>绣线菊灌丛(194.85mm)。地上植被层截留量在水源涵养总量中所占比例较小,但截留量不能完全说明其对水源涵养功能的影响。说明在燕山北部山地,天然次生杨桦林和榛子灌丛具有良好的水源涵养能力,绣线菊灌丛水源涵养能力较差,需采取合理措施对该地区大面积分布的绣线菊灌丛进行改造,以提高其水源涵养能力。  相似文献   

12.
山地森林-干旱河谷交错带不同植被枯落物水文效益研究   总被引:1,自引:0,他引:1  
对岷江上游山地森林-干旱河谷交错带的6种植被类型枯落物的水源调蓄功能及特征进行了研究,结果表明:6种植被类型按枯落物贮量大小排序为青冈次生林(46.20 t/hm2)>杨柳阔叶林(23.46 t/hm2)>针阔混交林(20.51t/hm2)>岷江柏幼林(16.02 t/hm2)>次生灌丛(11.17 t/hm2)>荒草坡(9.23 t/hm2),按枯落物层最大持水量、最大拦蓄量和有效拦蓄量大小排序均是青冈次生林>杨柳阔叶林>针阔混交林>岷江柏幼林>次生灌丛>荒草坡;在整个持水过程中,前2 h内各林分枯落物层吸水作用较强。  相似文献   

13.
露天煤矿排土场不同植被类型持水能力评价   总被引:3,自引:1,他引:2  
采用野外调查和室内综合分析,系统研究了露天煤矿排土场不同植被类型的枯落物特征、土壤物理性质、土壤渗透性能和蓄水能力变化,并采用主成分分析对各样地持水能力进行综合评价。结果表明:不同植被类型枯落物的厚度和蓄积量均差异显著(P0.05),乔木林地、灌木林地和荒草地枯落物厚度依次为1.80,1.23,0.83cm,枯落物蓄积量为6.76,2.96,0.58t/hm~2;乔木林地枯落物的持水能力和拦蓄能力最强,显著大于灌木林地和荒草地(P0.05)。各样地土壤容重依次为荒草地灌木林地乔木林地,乔木林地和灌木林地的土壤入渗能力显著高于荒草地(P0.05),初始入渗率、稳定入渗率和渗透总量分别为1.53~4.08mm/min、0.20~1.51mm/min和28~133mL。乔木林地和灌木林地的实际库容大于荒草地,林地水库贮水效率显著高于荒草地(P0.05)。采用主成分分析法评价露天煤矿排土场不同植被类型的持水能力,15个评价指标可优化为3个主成分,累计贡献率为96.832%,各样地持水能力综合得分为乔木林地灌木林地荒草地。从排土场枯落物层和土壤层的持水能力角度,可选择乔木树种(刺槐)作为主要复垦植被。  相似文献   

14.
夏尔希里自然保护区典型植被土壤水源涵养功能探究   总被引:5,自引:4,他引:1  
为了探究夏尔希里自然保护区不同植被类型土壤水源涵养功能特征,在保护区内选取具有代表性的草地、灌木、森林样地共13个,以不同植被类型的土壤为试验材料,采用野外调查与室内试验相结合的方法,分别对保护区内的草地区、灌木区、森林区的土壤水源涵养能力进行定量分析。结果表明:(1)随着土层深度的增加,研究区草地土壤容重逐渐增大,在土壤层0-10 cm处出现最小值为0.69 g/cm^3。草地土壤持水能力和蓄水能力变化规律一致,均表现为0-10 cm>10-20 cm>20-30 cm。(2)随着土层深度的增加,灌木土壤容重变化差异较大,变化范围为0.98~1.63 g/cm^3,最小值出现在土壤层0-10 cm处。各水源涵养能力指标含量在不同的土层深度上差异性显著(P<0.05),灌木持水能力大体表现为0-10 cm>10-20 cm>20-30 cm>30-40 cm>40-50 cm,蓄水能力随着土层深度的增加,呈现先增加后减小的趋势。(3)森林土壤水文物理性质和土壤水源涵养指标之间存在显著性差异(P<0.05),随着土层深度的增加,土壤容重逐渐增大,在土层0-10 cm处出现最小值为0.45 g/cm^3。森林土壤持水能力主要以0-10,20-30,40-50 cm为主,占总持水量的71.6%,蓄水量在水源涵养功能中占比较小。  相似文献   

15.
沙质海岸不同植被类型土壤水源涵养功能的研究   总被引:10,自引:0,他引:10  
对沙质海岸不同植被类型水源涵养功能进行研究.结果表明:不同植被类型改良土壤物理性质和涵养水源的能力有较大差异,混交林地比纯林和草甸具有更好的改良土壤作用和涵养水源功能。黑松紫穗槐混交林、黑松刺槐混交林、黑松麻栎混交林、黑松纯林和草甸的总贮水量分别为1973.97t/hm^2 ,1760.95t/hm^2,1727.44t/hm^2,1638.60t/hm^2和1413.04t/hm^2,其中土壤层贮水量占总蓄水量的97%以上,而其枯落物的最大持水量依次为15.3t/hm^2,22.15t/hm^2,43.42t/hm^2.11.27t/hm^2和9.4t/hm^2。因此,建议沙质海岸植被恢复以乔灌混交林为主。  相似文献   

16.
内蒙古自治区多伦县不同林地枯落物持水性能研究   总被引:6,自引:2,他引:4  
[目的]探讨多伦县不同林分类型的枯落物持水性能差异,为该区森林土壤持水性能提供基础数据理论。[方法]以内蒙古自治区锡林浩特市多伦县为研究区,选取代表性的10块林地,收集林地地表枯落物,测定其现存量、持水性能及拦蓄能力等,旨在分析不同林分类型下枯落物持水性能的差异及其对表层土壤(0—20cm)含水率的影响。[结果](1)乔木林的枯落物现存量、持水能力和拦蓄能力均高于灌木林。(2)天然林的枯落物现存量、持水能力和拦蓄能力均高于人工林。(3)各林地枯落物厚度显著影响表层土壤的含水率,即枯落层越厚,表层土壤含水率越高。[结论]由于树种组成、年龄、林分密度及立地条件的影响,不同林分类型的持水能力差异较大,但变化规律为基本一致,同时,林地对土壤水分的影响高于草地。  相似文献   

17.
辽西低山丘陵区针叶林与阔叶林枯落物持水性对比   总被引:1,自引:0,他引:1  
为对比分析辽西低山丘陵区针叶林与阔叶林枯落物的持水性差异,为辽西森林植被恢复提供科学依据和技术支撑,选取3个针叶林(红松林、油松林、兴安落叶松林)和3个阔叶林(榆树林、山杨林、紫椴林)下的枯落物作为研究对象,采用野外现场采样与室内浸水相结合的方法对枯落物的持水特性进行测定.结果表明:针叶林平均蓄积量大于阔叶林,其中针叶林蓄积量在14.65 ~ 17.75 t/hm2,阔叶林在8.44 ~ 16.92 t/hm2;针叶林枯落物平均厚度(2.79 cm)大于阔叶林(2.44 cm);针叶林最大持水率在148.88% ~ 173.19%,阔叶林在145.42% ~156.91%;针叶林有效拦蓄水量为19.47~25.59 t/hm2,阔叶林有效拦蓄水量为10.56~ 22.04 t/hm2,表现为针叶林下枯落物的拦蓄能力更强;针叶林半分解层拦蓄水量显著大于未分解层,阔叶林未分解层拦蓄水量大于半分解层;阔叶林未分解层吸水速率大于针叶林.  相似文献   

18.
密云水库入库流量变异性及其影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
对高原湿地纳帕海周边山地8种不同植被类型枯落物持水特性进行了研究。结果表明,(1)8种植被类型枯落物储量和总持水量均表现出半分解+分解层>未分解层的变化趋势;枯落物储量呈现从乔木林到灌木林和荒草地逐渐降低的总体趋势;高山柳+白桦混交林最大总持水量最大,受人为干扰较为严重的高山松纯林总持水量最小。(2)初始1h内不同植被类型不同层次枯落物持水量均迅速增大,在浸水6~10h后,枯落物持水量基本达到饱和。(3)枯落物在浸水前0.5h内吸水速率最大,6~10h时下降速度明显减缓。(4)不同植被类型枯落物失水速率有一致性,随着失水时间延长而逐渐变小,呈近直线下降。综合分析得出,高山柳+白桦混交林枯落物持水量最大,调节洪峰能力最强,失水过程最佳,补给水源能力最好,其水文生态效应是8种植被类型中最好的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号