首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonicotinoid insecticides are compounds acting agonistically on insect nicotinic acetylcholine receptors (nAChR). They are especially active on hemipteran pest species such as aphids, whiteflies, and planthoppers, but also commercialized to control many coleopteran and some lepidopteran pest species. The most prominent member of this class of insecticides is imidacloprid. All neonicotinoid insecticides bind with high affinity (I50-values around 1 nM) to [3H]imidacloprid binding sites on insect nAChRs. One notable ommission is the neonicotinoid thiamethoxam, showing binding affinities up to 10,000-fold less potent than the others, using housefly head membrane preparations. Electrophysiological whole cell voltage clamp studies using neurons isolated from Heliothis virescens ventral nerve cord showed no response to thiamethoxam when applied at concentrations of 0.3 mM, although the symptomology of poisoning in orally and topically treated noctuid larvae suggested strong neurotoxicity. Other neonicotinoids, such as clothianidin, exhibited high activity as agonists on isolated neurons at concentrations as low as 30 nM. There was no obvious correlation between biological efficacy of thiamethoxam against aphids and lepidopterans and receptor affinity in electrophysiological and binding assays. Pharmacokinetic studies using an LC-MS/MS approach to analyze haemolymph samples taken from lepidopteran larvae revealed that thiamethoxam orally applied to 5th instar Spodoptera frugiperda larvae was rapidly metabolized to clothianidin, an open-chain neonicotinoid. Clothianidin shows high affinity to nAChRs in both binding assays and whole cell voltage clamp studies. When applied to cotton plants, thiamethoxam was also quickly metabolized, with clothianidin being the predominant neonicotinoid in planta briefly after application, as indicated by LC-MS/MS analyses. Interestingly, the N-desmethylated derivative of thiamethoxam, N-desmethyl thiamethoxam, was not significantly produced in either lepidopteran larvae or in cotton plants, although it was often mentioned as a possible metabolite, being nearly as active as imidacloprid. In conclusion, our investigations show that thiamethoxam is likely to be a neonicotinoid precursor for clothianidin.  相似文献   

2.
BACKGROUND: Neonicotinoid insecticides are generally efficacious against many turfgrass pests, including several important phloem‐feeding insects. However, inconsistencies in control of western chinch bugs, Blissus occiduus, have been documented in field efficacy studies. This research investigated the efficacy of three neonicotinoid insecticides (clothianidin, imidacloprid and thiamethoxam) against B. occiduus in buffalograss under field conditions and detected statistically significant differences in B. occiduus numbers among treatments. A subsequent study documented the relative quantity and degradation rate of these insecticides in buffalograss systemic leaf tissues, using HPLC. RESULTS: Neonicotinoid insecticides initially provided significant reductions in B. occiduus numbers, but mortality diminished over the course of the field studies. Furthermore, while all three neonicotinoids were present in the assayed buffalograss leaf tissues, imidacloprid concentrations were significantly higher than those of clothianidin and thiamethoxam. Over the course of the 28 day study, thiamethoxam concentrations declined 700‐fold, whereas imidacloprid and clothianidin declined only 70‐fold and 60‐fold respectively. CONCLUSIONS: Field studies continued to verify inconsistencies in B. occiduus control with neonicotinoid insecticides. This is the first study to document the relative concentrations of topically applied neonicotinoid insecticides in buffalograss systemic leaf tissues. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
四种新烟碱类杀虫剂对蜜蜂的急性毒性及初级风险评估   总被引:2,自引:1,他引:1  
采用饲喂管法和点滴法,分别测定了吡虫啉、噻虫嗪、噻虫胺、啶虫脒4种原药及其制剂对意大利蜜蜂成年工蜂的急性毒性,并采用危害商值(HQ)法进行了初级风险评价。结果表明:饲喂管法测得97.3%吡虫啉原药、25%吡虫啉可湿性粉剂、96%噻虫嗪原药、30%噻虫嗪悬浮剂、97%噻虫胺原药、5%噻虫胺可湿性粉剂、96%啶虫脒原药及40%啶虫脒可溶性粉剂的经口毒性48 hLD50值分别为有效成分8.04×10-3、9.46×10-3、7.04×10-3、4.64×10-3、11.8×10-3、5.25×10-3、5.22和6.31μg/蜂;点滴法测得各药剂的接触毒性48 h-LD50值分别为有效成分2.46×10-2、1.33×10-2、3.63×10-2、9.27×10-3、1.52×10-2、2.21×10-2、5.82和5.07μg/蜂。按《化学农药环境安全评价试验准则》的毒性等级划分标准,啶虫脒原药及其可溶性粉剂对蜜蜂的急性毒性均为中等毒,其他6种药剂对蜜蜂的急性毒性均为高毒;根据危害商值(HQ),啶虫脒对蜜蜂为低风险,吡虫啉、噻虫嗪和噻虫胺对蜜蜂均存在高风险。  相似文献   

4.
BACKGROUND: Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non‐target crayfish associated with rice–crayfish crop rotations. One solution to the near‐exclusive reliance on pyrethroids in a rice–crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice–crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda‐cyhalothrin and etofenprox. RESULTS: Neonicotinoid insecticides are at least 2–3 orders of magnitude less acutely toxic (96 h LC50) than pyrethroids to juvenile Procambarid crayfish: lambda‐cyhalothrin (0.16 µg AI L?1) = etofenprox (0.29 µg AI L?1) ? clothianidin (59 µg AI L?1) > thiamethoxam (967 µg AI L?1) > dinotefuran (2032 µg AI L?1). CONCLUSION: Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice–crayfish crop rotations. Further field‐level neonicotinoid acute and chronic toxicity testing with crayfish is needed. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Shi X  Jiang L  Wang H  Qiao K  Wang D  Wang K 《Pest management science》2011,67(12):1528-1533
BACKGROUND: Imidacloprid has been a major neonicotinoid insecticide for controlling Aphis gossypii (Glover) (Homoptera: Aphididae) and other piercing–sucking pests. However, the resistance to imidacloprid has been recorded in many target insects. At the same time, cross‐resistance of imidacloprid and other insecticides, especially neonicotinoid insecticides, has been detected. RESULTS: Results showed that the level of cross‐resistance was different between imidacloprid and tested neonicotinoid insecticides (no cross‐resistance: dinotefuran, thiamethoxam and clothianidin; a 3.68–5.79‐fold cross‐resistance: acetamiprid, nitenpyram and thiacloprid). In the study of sublethal effects, imidacloprid at LC20 doses could suppress weight gain and honeydew excretion, but showed no significant effects on longevity and fecundity of the imidacloprid‐resistant cotton aphid, A. gossypii. However, other neonicotinoid insecticides showed significant adverse effects on biological characteristics (body weight, honeydew excretion, longevity and fecundity) in the order of dinotefuran > thiamethoxam and clothianidin > nitenpyram > thiacloprid and acetamiprid. CONCLUSION: The results indicated that dinotefuran is the most effective insecticide for use against imidacloprid‐resistant A. gossypii. To avoid further resistance development, the use of nitenpyram, acetamiprid and thiacloprid should be avoided on imidacloprid‐resistant populations of A. gossypii. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
The intracellular toxicity of the neonicotinoid insecticides imidacloprid and clothianidin was studied on cockroach Periplaneta americana Kenyon cells using the trypan blue exclusion test and the adenylate kinase (AK) detection reagent. To evaluate cytotoxicity, Kenyon cells were exposed to different concentrations (1, 5, 10, 50 and 100 μM) of both imidacloprid and clothianidin at different delays (1, 3, 5, 8 and 24 h). Our data show that both imidacloprid and clothianidin decreased cell viability, with a more pronounced effect following imidacloprid exposure. Indeed, a significant decrease of cell viability was observed for 50 and 100 μM imidacloprid at 8 and 24 h, with trypan blue exclusion test. Study of the AK activity revealed that 50 and 100 μM imidacloprid induced an increase of AK activity, except for 50 μM at 24 h whereas at the same concentrations, clothianidin induced a transient effect at 5 and 8 h. According to previous studies showing that imidacloprid was a partial agonist and clothianidin a full agonist of insect nicotinic acetylcholine receptors, we demonstrated that both imidacloprid and clothianidin were also able to induce distinct intracellular toxic effects.  相似文献   

7.
BACKGROUND: The potential of systemic neonicotinoid insecticides to control potato leafhopper, Empoasca fabae (Harris), a damaging pest of wine grapes in the eastern United States, was investigated. Soil or foliar applications were made to potted or field‐grown vines, and the response of leafhoppers was determined in clip cages over the following month on young or mature leaves. RESULTS: Foliar application of imidacloprid caused immediate and long‐lasting reductions in E. fabae survival on both leaf ages, whereas the activity of soil‐applied imidacloprid was delayed. Clothianidin, imidacloprid and thiamethoxam all provided long‐lasting reduction in leafhopper survival on young and mature foliage when applied through either delivery route. However, the percentage of moribund nymphs was significantly greater on foliar‐treated vines and increased over time in mature and immature leaves compared with soil‐treated vines. Residue analysis of foliar‐applied imidacloprid showed an 89% decline in mature leaves from day 1 to day 27, and a 98% decline in immature leaves over the same time period. Comparison of soil‐applied clothianidin, imidacloprid and thiamethoxam in field‐grown vines showed significant reduction in E. fabae only on mature leaves of vines treated with thiamethoxam. CONCLUSIONS: Neonicotinoids can control E. fabae in small vines, even in rapidly expanding foliage where this pest causes greatest injury. Soil application provides superior long‐term vine protection because declining residues on foliar‐treated vines lead to suboptimal activity within 2–3 weeks. Vineyard managers of susceptible cultivars may take advantage of this approach to E. fabae management by using foliar applications of the three neonicotinoids tested here, or by using soil‐applied thiamethoxam. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant‐feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)测定麦叶和麦穗中噻虫嗪及其代谢物噻虫胺残留的痕量、快速检测方法.麦叶或麦穗中噻虫嗪及其代谢物噻虫胺用乙腈提取,NH2/Carb固相萃取柱净化,内标法定量.结果表明:噻虫嗪和噻虫胺在0.001~~0.5 mg/L范围内线性关系良好,相关系数r大于0.99;噻虫嗪和噻虫...  相似文献   

10.
The efficacies of four systemic neonicotinoid insecticides applied to potted avocado trees at manufacturer-recommended rates were assessed against the avocado thrips, Scirtothrips perseae Nakahara. At the time of treatment, fully expanded first-flush young leaves were tagged for identification, and a proportion of these leaves was used in bioassays with second-instar thrips. At 7 weeks post-treatment, a second flush of leaves had fully expanded on the trees, and these leaves were included in additional bioassays comparing avocado thrips mortality on both first- and second-flush leaves. In bioassays with first-flush leaves, imidacloprid (273 mg AI pot(-1)) was the most effective insecticide, providing at least 70% mortality of thrips for 14 weeks. Thiamethoxam (137 mg AI pot(-1)), clothianidin (109 mg AI pot(-1)) and dinotefuran (241 mg AI pot(-1)) provided good control in bioassays that were conducted within 4 weeks of treatment, but thereafter their efficacies were inconsistent. In bioassays with second-flush leaves, imidacloprid provided at least 70% mortality up to 9 weeks after the insecticide application. Thereafter, mortality declined to 30% or lower. Bioassays with second-flush leaves collected from trees treated with thiamethoxam, clothianidin and dinotefuran resulted in unacceptably low thrips mortality. Monitoring of imidacloprid and thiamethoxam residues by ELISA showed that the greater persistence of imidacloprid in both first and second leaf flushes was due to a steadier uptake of this material. Although thiamethoxam residues rose quickly within the first leaf flush, levels had already begun to dissipate by the time the second leaf flush had started to develop.  相似文献   

11.
BACKGROUND: Japanese beetles, Popillia japonica Newman, are a quarantine challenge for nursery shipments from infested to non‐infested states. Marathon (imidacloprid) and Discus (imidacloprid + cyfluthrin) are approved preharvest nursery treatments (US Domestic Japanese Beetle Harmonization Plan; DJHP). This study evaluated approved and non‐approved (acephate, carbaryl, clothianidin, dinotefuran, halofenozide, thiamethoxam, trichlorfon) preharvest treatments, optimal rates (labeled 1×, 0.3–0.75× or 2–3×) and optimal timings (June, July, August and September) to control early‐instar (grubs) P. japonica in field nurseries. RESULTS: Most insecticides effectively reduced grub densities, except for acephate, carbaryl and trichlorfon. Clothianidin, thiamethoxam and halofenozide provided grub control equivalent to DJHP standards during most years. Across all test years and timings, percentage grub reductions were: Marathon (1×: 59.2–100; 3×: 78.9–100), Discus (1×: 60.7–100), clothianidin (1×: 96.1–100; 3×: 97.4–100), thiamethoxam (1×: 75.0–100; 3×: 80.0–100), halofenozide (1×: 70.0–100; 3×: 90.0–100) and dinotefuran (1×: 13.2–88.2; 3×: 71.1–93.4). CONCLUSIONS: July application was more consistent and effective than other timings, and higher rates (2× and 3×) did not generally improve grub control. Overall, clothianidin, thiamethoxam and halofenozide (and dinotefuran applied in August) were equivalent to current DJHP standards. These insecticides may be suitable for DJHP Category 2 states, potentially lowering grower costs. Copyright © 2009 Society of Chemical Industry  相似文献   

12.

BACKGROUND

In 2013, the European Commission restricted the use of three neonicotinoids (clothianidin, imidacloprid and thiamethoxam) and the pyrazole fipronil, which are widely used to control early‐season pests. Here, we used original farm survey data to examine the impact of the restrictions on pest management practices in eight regional case studies including maize, oilseed rape and sunflower in seven European Union (EU) countries.

RESULTS

In four case studies, farmers switched to using untreated seeds as no alternative seed treatments were available. In three case studies, farmers switched to using unrestricted neonicotinoid‐ or pyrethroid‐treated seeds. In five case studies, farmers increased the use of soil or foliar treatments, with pyrethroids as the principal insecticide class. Other changes in pest management practices ranged from increased sowing density to more frequent scouting for pests. Many farmers perceived that the time, cost and amount of insecticides required to protect crops increased, along with pest pressure. Alternative seed treatments were mostly perceived as being less effective than the restricted seed treatments.

CONCLUSION

Farmers generally relied on alternative seed treatments or more soil/foliar treatments in the first growing season after the restrictions took effect. Further study is required to assess the effectiveness and sustainability of these alternatives compared with the restricted insecticides. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

13.
BACKGROUND: Although there are still no confirmed reports of strong resistance to neonicotinoid insecticides in aphids, the peach-potato aphid (Myzus persicae Sulzer) shows variation in response, with some clones exhibiting up to tenfold resistance to imidacloprid. Five clones varying in response to imidacloprid were tested with four other neonicotinoid molecules to investigate the extent of cross-resistance.RESULTS: All four compounds-thiamethoxam, thiacloprid, clothianidin and dinotefuran-were cross-resisted, with ED(50) values ranked in the same order as for imidacloprid. Resistance factors ranged up to 11 for imidacloprid, 18 for thiamethoxam, 13 for thiacloprid, 100 for clothianidin and 6 for dinotefuran.CONCLUSION: This variation in response does not appear to be sufficient to compromise the field performance of neonicotinoids aimed at controlling aphids. However, it highlights the need for careful vigilance and stewardship in all M. persicae populations, and a need to consider neonicotinoids as a single cross-resisted group for management purposes.  相似文献   

14.
采用稻苗浸渍法测定了长、短翅型褐飞虱对烯啶虫胺、环氧虫啶、呋虫胺、噻虫嗪、噻虫胺、吡虫啉、毒死蜱、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性,并对其体内解毒酶活力进行了比较分析。结果表明:长翅型与短翅型褐飞虱若虫对新烟碱类杀虫剂呋虫胺、噻虫嗪、噻虫胺和吡虫啉的敏感性存在显著差异,长翅型比短翅型更敏感;相反,对于有机磷类杀虫剂毒死蜱,短翅型褐飞虱则更敏感;2种生物型对烯啶虫胺、环氧虫啶、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性无显著差异。解毒酶相对比活力测定结果表明,长翅型褐飞虱若虫酯酶比活力显著高于短翅型,细胞色素P450单加氧酶比活力显著低于短翅型,而谷胱甘肽S-转移酶比活力无显著性差异。本研究结果可为褐飞虱的有效防控提供科学参考。  相似文献   

15.
为提高田间韭菜养根期噻虫嗪和噻虫胺对韭菜迟眼蕈蚊的防治效果,通过喷淋和灌溉施药方式研究了噻虫嗪和噻虫胺在土壤中的分布情况、喷淋施药后在田间的移动性以及对韭蛆的防治效果和对韭菜生长指标的影响。结果表明,喷淋施药比灌溉施药利于药液到达地下靶标位置,且药剂浓度随着土壤深度增加而减小;喷淋施药后药剂在韭菜根部土壤中的浓度明显高于其在行间土壤中的浓度;施药后120 d与7 d相比,药剂在垂直方向上出现下移,在水平方向上随水流方向移动;12 kg(a.i.)/hm2噻虫嗪和3、6 kg(a.i.)/hm2噻虫胺喷淋施药后对韭菜迟眼蕈蚊的防治效果在80%以上,且均可维持120 d以上,并对韭菜生长有促进作用。因此,利用噻虫嗪和噻虫胺喷淋施药防治韭菜养根期的韭菜迟眼蕈蚊是可行的。  相似文献   

16.
BACKGROUND: The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new‐generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. RESULTS: Mean numbers of second‐ and third‐instar larvae were significantly higher in plants seed‐treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new‐generation adults was reduced by 52 and 39% for plants seed‐treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. CONCLUSION: Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
One of the major challenges in managing the Colorado potato beetle, Leptinotarsa decemlineata (Say) is its remarkable ability to develop resistance to virtually every insecticide that has ever been used against it. Resistance is particularly common throughout northeastern USA as far north as Maine. The first instances of resistance to imidacloprid have already been reported from several locations in New York, Delaware and southern Maine. Rotating insecticides with different modes of action may delay insecticide resistance, but successful implementation of this technique depends on a good understanding of resistance and cross-resistance patterns in populations of target pests. LC(50) values were measured for imidacloprid and thiamethoxam in Colorado potato beetle populations from a variety of locations in the USA and Canada using diet incorporation bioassays. The field performance of imidacloprid, thiamethoxam and clothianidin against imidacloprid-resistant beetles on a commercial potato farm in southern Maine was also evaluated. Correlation between LC(50) values for imidacloprid and thiamethoxam was highly significant, even when populations previously exposed to thiamethoxam were excluded from the analysis. There was no statistically detectable difference in the LC(50) values between populations exposed to both insecticides and to imidacloprid alone. Applications of neonicotinoid insecticides at planting delayed build-up of imidacloprid-resistant beetle populations on field plots by 1-2 weeks but failed to provide adequate crop protection. Consistently with bioassay results, there was also substantial cross-resistance among the three tested neonicotinoid insecticides. Results of the present study support the recommendation to avoid rotating imidacloprid with thiamethoxam as a part of a resistance management plan.  相似文献   

18.
为明确噻虫嗪在节瓜上的残留行为,于2015年在广东和上海两地进行了噻虫嗪在节瓜上的规范田间残留试验,建立了节瓜中噻虫嗪及其代谢物噻虫胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。样品用乙腈提取,经氨基固相萃取小柱净化,HPLC-MS/MS 检测,外标法定量。结果表明:噻虫嗪在节瓜上的消解半衰期为4.98~5.84 d;采用25%噻虫嗪水分散粒剂 (WG),分别按有效成分75和112.5 g/hm2 的剂量于幼果期开始施药,施药2~3次,每次施药间隔期为7~10 d,距最后一次施药后3、5、7 d 采样测定,节瓜中噻虫嗪和噻虫胺的残留量分别为0.010~0.422 mg/kg和 <0.010~0.020 mg/kg。膳食摄入风险初步评估结果显示:其风险商值 (RQ) 为0.044,表明噻虫嗪的长期膳食摄入风险较低。目前中国尚未制定噻虫嗪在节瓜上的最大允许残留限量 (MRL) 标准,根据试验结果,建议中国可将噻虫嗪在节瓜上的MRL值暂定为1 mg/kg。  相似文献   

19.
Neonicotinoids bind selectively to insect nicotinic acetylcholine receptors with nanomolar affinity to act as potent insecticides. While the members of the neonicotinoid class have many structural features in common, it is not known whether they also share the same mode of binding to the target receptor. Previous competition studies with [3H]imidacloprid, the first commercialised neonicotinoid, indicated that thiamethoxam, representing a novel structural sub-class, may bind in a different way from that of other neonicotinoids. In the present work we analysed the mode of [3H]imidacloprid displacement by established neonicotinoids and newly synthesized analogues in the aphids Myzus persicae Sulzer and Aphis craccivora Koch. We found two classes of neonicotinoids with distinct modes of interference with [3H]imidacloprid, described as direct competitive inhibition and non-competitive inhibition, respectively. Competitive neonicotinoids were acetamiprid, nitenpyram, thiacloprid, clothianidin and nithiazine, whereas thiamethoxam and the N-methyl analogues of imidacloprid and clothianidin showed non-competitive inhibition. The chloropyridine or chlorothiazole heterocycles, the polar pharmacophore parts, such as nitroimino, cyanoimino and nitromethylene, and the cyclic or acyclic structure of the pharmacophore were not relevant for the mode of inhibition. Consensus structural features of the neonicotinoids were defined for the two mechanisms of interaction with [3H]imidacloprid binding. Furthermore, two sub-classes of non-competitive inhibitors can be discriminated on the basis of their Hill coefficients for imidacloprid displacement. We conclude from the present data that the direct competitors share the binding site with imidacloprid, whereas non-competitive compounds, like thiamethoxam, bind to a different site or in a different mode.  相似文献   

20.
建立了小麦及其秸秆中联苯菊酯、噻虫嗪和代谢物噻虫胺残留量的分析方法。样品经乙酸-乙腈提取,无水硫酸镁、N-丙基乙二胺 (PSA) 及GCB净化,超高效液相色谱-三重四极杆串联质谱仪 (UPLC-MS/MS) 检测。结果表明:在0.0025~0.1 mg/L范围内,联苯菊酯、噻虫嗪和噻虫胺的峰面积与其质量浓度间呈良好线性关系,R2均大于0.99。麦粒样品在0.01、0.1和0.5 mg/kg,秸秆样品在0.05、0.5和3 mg/kg添加水平下,联苯菊酯、噻虫嗪和噻虫胺在小麦及其秸秆中的添加回收率分别在93%~98%、87%~98%和87%~98%之间,相对标准偏差 (RSD) 分别在0.8%~4.8%、0.6%~4.1%和1.0%~3.3%之间。按照《农作物中农药残留试验准则》在全国12个小麦主产区开展规范残留试验,采用35%联苯菊酯 ? 噻虫嗪悬浮剂,以制剂用量150 g/hm2 (有效成分52.5 g/hm2) 的剂量,于小麦蚜虫始盛时期施药1次,施药后间隔14 d和21 d采集的麦粒中联苯菊酯、噻虫嗪和噻虫胺的残留量结果验证了相关残留限量 (MRL) 值的适用性,且多点试验的结果具有更高的可靠性。长期及短期膳食暴露风险评估结果表明,小麦中联苯菊酯、噻虫嗪和噻虫胺残留量对1~6岁儿童和普通人群产生的膳食暴露风险在可接受范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号