首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonicotinoids bind selectively to insect nicotinic acetylcholine receptors with nanomolar affinity to act as potent insecticides. While the members of the neonicotinoid class have many structural features in common, it is not known whether they also share the same mode of binding to the target receptor. Previous competition studies with [3H]imidacloprid, the first commercialised neonicotinoid, indicated that thiamethoxam, representing a novel structural sub-class, may bind in a different way from that of other neonicotinoids. In the present work we analysed the mode of [3H]imidacloprid displacement by established neonicotinoids and newly synthesized analogues in the aphids Myzus persicae Sulzer and Aphis craccivora Koch. We found two classes of neonicotinoids with distinct modes of interference with [3H]imidacloprid, described as direct competitive inhibition and non-competitive inhibition, respectively. Competitive neonicotinoids were acetamiprid, nitenpyram, thiacloprid, clothianidin and nithiazine, whereas thiamethoxam and the N-methyl analogues of imidacloprid and clothianidin showed non-competitive inhibition. The chloropyridine or chlorothiazole heterocycles, the polar pharmacophore parts, such as nitroimino, cyanoimino and nitromethylene, and the cyclic or acyclic structure of the pharmacophore were not relevant for the mode of inhibition. Consensus structural features of the neonicotinoids were defined for the two mechanisms of interaction with [3H]imidacloprid binding. Furthermore, two sub-classes of non-competitive inhibitors can be discriminated on the basis of their Hill coefficients for imidacloprid displacement. We conclude from the present data that the direct competitors share the binding site with imidacloprid, whereas non-competitive compounds, like thiamethoxam, bind to a different site or in a different mode.  相似文献   

2.
Shi X  Jiang L  Wang H  Qiao K  Wang D  Wang K 《Pest management science》2011,67(12):1528-1533
BACKGROUND: Imidacloprid has been a major neonicotinoid insecticide for controlling Aphis gossypii (Glover) (Homoptera: Aphididae) and other piercing–sucking pests. However, the resistance to imidacloprid has been recorded in many target insects. At the same time, cross‐resistance of imidacloprid and other insecticides, especially neonicotinoid insecticides, has been detected. RESULTS: Results showed that the level of cross‐resistance was different between imidacloprid and tested neonicotinoid insecticides (no cross‐resistance: dinotefuran, thiamethoxam and clothianidin; a 3.68–5.79‐fold cross‐resistance: acetamiprid, nitenpyram and thiacloprid). In the study of sublethal effects, imidacloprid at LC20 doses could suppress weight gain and honeydew excretion, but showed no significant effects on longevity and fecundity of the imidacloprid‐resistant cotton aphid, A. gossypii. However, other neonicotinoid insecticides showed significant adverse effects on biological characteristics (body weight, honeydew excretion, longevity and fecundity) in the order of dinotefuran > thiamethoxam and clothianidin > nitenpyram > thiacloprid and acetamiprid. CONCLUSION: The results indicated that dinotefuran is the most effective insecticide for use against imidacloprid‐resistant A. gossypii. To avoid further resistance development, the use of nitenpyram, acetamiprid and thiacloprid should be avoided on imidacloprid‐resistant populations of A. gossypii. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
The Colorado potato beetle, Leptinotarsa decemlineata (Say), has developed resistance to many insecticides used for its control, recently including imidacloprid, a neonicotinoid compound. Other neonicotinoids are now being deployed to control this pest. A key point in the strategies of resistance management is the monitoring of resistance and cross-resistance. In the summer of 2003, imidacloprid-resistant adult Colorado potato beetles collected from Long Island, New York, USA were bioassayed using topical applications of imidacloprid and nine other neonicotinoids. Compared to a standard susceptible strain, the Long Island beetles showed 309-fold resistance to imidacloprid, and lower levels of cross-resistance to all other neonicotinoids, despite these never having been used in the field, i.e., 59-fold to dinotefuran, 33-fold to clothianidin, 29-fold to acetamiprid, 28-fold to N-methylimidacloprid, 25-fold to thiacloprid, 15-fold to thiamethoxam, 10-fold to nitenpyram, but less than 2-fold to nicotine. In injection bioassays, high resistance to imidacloprid was also found (116-fold). Piperonyl butoxide partially suppressed resistance to imidacloprid, but the resistance level was still over 100-fold, indicating that other mechanisms were primarily responsible for resistance. Low levels of resistance (8- to 10-fold) were found to the nicotinic activator, spinosad, in an imidacloprid-resistant strain collected from the same field in 2004. The cross-resistance seen with all the neonicotinoids tested suggests that the rotation of imidacloprid with other neonicotinoids may not be an effective long-term resistance management strategy. Rotation with spinosad also carries some risk, but it is unlikely that spinosad resistance in this case is mechanistically related to that for the neonicotinoids.  相似文献   

4.
为明确山东省棉蚜对新烟碱类杀虫剂的抗性水平,采用毛细管微量点滴法测定了泰安、聊城和东营3个田间种群及1个敏感种群对吡虫啉、烯啶虫胺、啶虫脒、噻虫嗪、噻虫啉、噻虫胺6种新烟碱类杀虫剂的敏感性,同时测定了磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)和增效醚(PBO)3种酶抑制剂的增效作用。结果表明:泰安棉蚜种群对烯啶虫胺的抗性倍数为16.95,处于中等抗性水平,对吡虫啉和啶虫脒的抗性倍数分别为5.69和9.57,已产生低水平抗性,对噻虫胺、噻虫嗪和噻虫啉的抗性倍数均小于3.0,仍较敏感;聊城棉蚜种群对吡虫啉、啶虫脒和噻虫嗪的抗性倍数分别为28.51、25.88和18.16,属中等抗性水平,对噻虫啉和噻虫胺的抗性倍数分别为6.01和6.37,已产生低水平抗性,对烯啶虫胺仍处于敏感阶段;东营棉蚜种群对吡虫啉、啶虫脒和噻虫胺的抗性倍数分别为37.95、21.52和12.95,已产生中等水平抗性,对噻虫啉、烯啶虫胺和噻虫嗪的抗性倍数分别为7.07、6.38和4.75,处于低水平抗性阶段。多功能氧化酶抑制剂PBO和羧酸酯酶抑制剂TPP对6种供试新烟碱类杀虫剂的增效作用明显,谷胱甘肽-S-转移酶抑制剂DEM对这6种药剂也具有一定的增效作用。研究表明,山东省泰安等3地区棉蚜种群对6种新烟碱类杀虫剂均产生了不同程度的抗药性,多功能氧化酶和羧酸酯酶可能在棉蚜对该类杀虫剂的抗性中起主要作用,谷胱甘肽-S-转移酶可能也具有一定的作用。  相似文献   

5.
BACKGROUND: Previous studies have suggested that the resistance mechanism towards spinosad in Frankliniella occidentalis (Pergande) is an altered target site. Like the neonicotinoids, the spinosyns act on nicotinic acetylcholine receptors (nAChRs) in insects, but at a distinct site. The changes in nAChRs related to spinosad resistance in thrips might involve interaction with neonicotinoids. In this study, the efficacy of spinosad and neonicotinoids, alone and in combination, was evaluated in susceptible and spinosad‐resistant thrips strains. RESULTS: The neonicotinoids tested were imidacloprid, thiacloprid, acetamiprid, thiamethoxam and clothianidin. No cross‐resistance was shown between spinosad and any of the neonicotinoids. However, an increased toxicity was observed when a mixture of spinosad with thiamethoxam or clothianidin was tested. No synergism was found in the susceptible strains. The more spinosad‐resistant the thrips strain, the stronger was the synergism. CONCLUSION: Data suggest that spinosad and thiamethoxam may interact at the nAChRs in spinosad‐resistant thrips, facilitating enhanced insecticidal action. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
Neonicotinoid insecticides are compounds acting agonistically on insect nicotinic acetylcholine receptors (nAChR). They are especially active on hemipteran pest species such as aphids, whiteflies, and planthoppers, but also commercialized to control many coleopteran and some lepidopteran pest species. The most prominent member of this class of insecticides is imidacloprid. All neonicotinoid insecticides bind with high affinity (I50-values around 1 nM) to [3H]imidacloprid binding sites on insect nAChRs. One notable ommission is the neonicotinoid thiamethoxam, showing binding affinities up to 10,000-fold less potent than the others, using housefly head membrane preparations. Electrophysiological whole cell voltage clamp studies using neurons isolated from Heliothis virescens ventral nerve cord showed no response to thiamethoxam when applied at concentrations of 0.3 mM, although the symptomology of poisoning in orally and topically treated noctuid larvae suggested strong neurotoxicity. Other neonicotinoids, such as clothianidin, exhibited high activity as agonists on isolated neurons at concentrations as low as 30 nM. There was no obvious correlation between biological efficacy of thiamethoxam against aphids and lepidopterans and receptor affinity in electrophysiological and binding assays. Pharmacokinetic studies using an LC-MS/MS approach to analyze haemolymph samples taken from lepidopteran larvae revealed that thiamethoxam orally applied to 5th instar Spodoptera frugiperda larvae was rapidly metabolized to clothianidin, an open-chain neonicotinoid. Clothianidin shows high affinity to nAChRs in both binding assays and whole cell voltage clamp studies. When applied to cotton plants, thiamethoxam was also quickly metabolized, with clothianidin being the predominant neonicotinoid in planta briefly after application, as indicated by LC-MS/MS analyses. Interestingly, the N-desmethylated derivative of thiamethoxam, N-desmethyl thiamethoxam, was not significantly produced in either lepidopteran larvae or in cotton plants, although it was often mentioned as a possible metabolite, being nearly as active as imidacloprid. In conclusion, our investigations show that thiamethoxam is likely to be a neonicotinoid precursor for clothianidin.  相似文献   

7.
Laboratory bioassays applying the neonicotinoid insecticides imidacloprid, acetamiprid and nitenpyram against clones of the peach-potato aphid Myzus persicae (Sulzer) demonstrated that these compounds effectively circumvent the known carboxylesterase, modified acetylcholinesterase (MACE) and knock-down (kdr) insecticide resistance mechanisms in this species. However, some clones showed cross-tolerance (up to 18-fold) of these compounds relative to susceptible standards. A survey assessing the frequency of neonicotinoid tolerance in M persicae in the UK, based on samples collected from the field and glasshouses between 1997 and 2000, showed that such tolerance is still rare. Experiments on neonicotinoid-susceptible and -tolerant populations of M persicae under simulated field conditions in the laboratory showed that, although the latter were well controlled by imidacloprid applied at recommended application rates, they were more likely to survive and reproduce when this compound was applied at lower concentrations. Such conditions are probably periodically present in imidacloprid-treated field and glasshouse crops. Selection favouring tolerant forms of M persicae could lead to increases in their frequency and the evolution of more potent resistance to neonicotinoids.  相似文献   

8.
Applied aspects of neonicotinoid uses in crop protection   总被引:2,自引:0,他引:2  
Neonicotinoid insecticides comprise seven commercially marketed active ingredients: imidacloprid, acetamiprid, nitenpyram, thiamethoxam, thiacloprid, clothianidin and dinotefuran. The technical profiles and main differences between neonicotinoid insecticides, including their spectrum of efficacy, are described: use for vector control, systemic properties and versatile application forms, especially seed treatment. New formulations have been developed to optimize the bioavailability of neonicotinoids through improved rain fastness, better retention and spreading of the spray deposit on the leaf surface, combined with higher leaf penetration. Combined formulations with pyrethroids and other insecticides are also being developed with the aim of broadening the insecticidal spectrum of neonicotinoids and to replace WHO Class I products from older chemical classes. These innovative developments for life-cycle management, jointly with the introduction of generic products, will, within the next few years, turn neonicotinoids into the most important chemical class in crop protection.  相似文献   

9.
Liu Z  Dai Y  Huang G  Gu Y  Ni J  Wei H  Yuan S 《Pest management science》2011,67(10):1245-1252
BACKGROUND: The neonicotinoids imidacloprid, imidaclothiz, acetamiprid and thiacloprid consist of similar structural substituents but differ considerably with respect to soil use. Therefore, the effects of soil microbial activity on the degradation and bioefficacy persistence of the four neonicotinoids were evaluated. RESULTS: In unsterilised soils, 94.0% of acetamiprid and 98.8% of thiacloprid were degraded within 15 days, while only 22.5% of imidacloprid and 25.1% of imidaclothiz were degraded over a longer period of 25 days. In contrast, in sterilised soils, the degradation rates of acetamiprid and thiacloprid were respectively only 21.4% and 27.6%, whereas the degradation rates of imidaclothiz and imidacloprid were respectively 9.0% and almost 0% within 25 days. The degradation products of imidacloprid and imidaclothiz were identified as olefin, nitroso or guanidine metabolites, the degradation product of thiacloprid was identified as an amide metabolite and no degradation product of acetamiprid was detected. A bioefficacy assay revealed that the bioefficacy and persistence of imidacloprid, imidaclothiz, acetamiprid and thiacloprid against horsebean aphid A. craccivora were related to their degradation rate and the bioefficacy of their degradation products in soil. CONCLUSION: Soil microbial activity played a key role in the bioefficacy persistence of neonicotinoid insecticides and therefore significantly affected their technical profile after soil application. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
BACKGROUND: The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new‐generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. RESULTS: Mean numbers of second‐ and third‐instar larvae were significantly higher in plants seed‐treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new‐generation adults was reduced by 52 and 39% for plants seed‐treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. CONCLUSION: Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Twenty-one clones of the peach-potato aphid, Myzus persicae (Sulzer), carrying various combinations of known mechanisms of insecticide resistance were assessed for their response to the new pyridine azomethine compound, pymetrozine, in leaf-dip bioassays. Pymetrozine was also applied as a foliar spray to populations of four different UK M persicae clones on potato plants in field-simulator chambers. Neither study showed any evidence of cross-resistance to this compound. Pymetrozine, used in conjunction with other effective aphicides, such as pirimicarb and imidacloprid, can therefore play an important role in insecticide resistance-management strategies for M persicae.  相似文献   

12.
BACKGROUND: The neonicotinoid class of insecticides is a key component of pest management strategies used by stone fruit producers in Europe. Neonicotinoids are currently one of the most important tools for control of the peach‐potato aphid (Myzus persicae). Overreliance on neonicotinoids has led to the development of resistance through a combination of metabolic and target‐site resistance mechanisms in individual aphids. A resistance monitoring project was conducted by Syngenta in 2010 to determine the resistance status of M. persicae populations collected from France and Spain, and to determine the frequency of the target‐site mutation in those populations. RESULTS: Resistance monitoring suggests that resistance to neonicotinoids is relatively widespread in populations of M. persicae collected from peach orchards in the Languedoc‐Roussillon, Provence‐Alpes‐Cote d'Azur and Rhone‐Alpes regions of France, and resistance can be associated with the frequency of the target‐site mutation (R81T). The R81T mutation in its heterozygous form is also present in Spanish populations and is associated with neonicotinoid resistance. CONCLUSION: The widespread nature of neonicotinoid resistance in southern France and the potential for resistance development in northern Spain highlight the need for a coordinated management strategy employing insecticides with different modes of action to reduce the selection pressure with neonicotinoids. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Neonicotinoid insecticides are generally efficacious against many turfgrass pests, including several important phloem‐feeding insects. However, inconsistencies in control of western chinch bugs, Blissus occiduus, have been documented in field efficacy studies. This research investigated the efficacy of three neonicotinoid insecticides (clothianidin, imidacloprid and thiamethoxam) against B. occiduus in buffalograss under field conditions and detected statistically significant differences in B. occiduus numbers among treatments. A subsequent study documented the relative quantity and degradation rate of these insecticides in buffalograss systemic leaf tissues, using HPLC. RESULTS: Neonicotinoid insecticides initially provided significant reductions in B. occiduus numbers, but mortality diminished over the course of the field studies. Furthermore, while all three neonicotinoids were present in the assayed buffalograss leaf tissues, imidacloprid concentrations were significantly higher than those of clothianidin and thiamethoxam. Over the course of the 28 day study, thiamethoxam concentrations declined 700‐fold, whereas imidacloprid and clothianidin declined only 70‐fold and 60‐fold respectively. CONCLUSIONS: Field studies continued to verify inconsistencies in B. occiduus control with neonicotinoid insecticides. This is the first study to document the relative concentrations of topically applied neonicotinoid insecticides in buffalograss systemic leaf tissues. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Neonicotinoids represent a class of insect-selective ligands of nicotinic acetylcholine receptors. Imidacloprid, the first commercially used neonicotinoid insecticide, has been studied on neuronal preparations from many insects to date. Here we report first intrinsic binding data of thiamethoxam, using membranes from Myzus persicae Sulzer and Aphis craccivora Koch. In both aphids, specific binding of [3H]thiamethoxam was sensitive to temperature, while the absolute level of non-specific binding was not affected. In M persicae, binding capacity (Bmax) for [3H]thiamethoxam was ca 450 fmol mg(-1) of protein at 22 degrees C and ca 700 fmol mg(-1) of protein at 2 degrees C. The negative effect of increased temperature was reversible and hence not due to some destructive process. The affinity for [3H]thiamethoxam was less affected by temperature: Kd was ca 11 nM at 2 degrees C and ca 15 nM at 22 degrees C. The membranes also lost binding sites for [3H]thiamethoxam during prolonged storage at room temperature, and upon freezing and thawing. In A craccivora, [3H]thiamethoxam was bound with a capacity of ca 1000 fmol mg(-1) protein and an affinity of ca 90 nM, as measured at 2 degrees C. Overall, the in vitro temperature sensitivity of [3H]thiamethoxam binding was in obvious contrast to the behaviour of [3H]imidacloprid studied in parallel. Moreover, the binding of [3H]thiamethoxam was inhibited by imidacloprid in a non-competitive mode, as shown with M persicae. In our view, these differences demonstrate that thiamethoxam and imidacloprid, which represent different structural sub-classes of neonicotinoids, do not share the same binding site or mode. This holds also for other neonicotinoids, as we report in a companion article.  相似文献   

15.
BACKGROUND: Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae), is a major pest in European winter oilseed rape. Recently, control failures with pyrethroid insecticides commonly used to control this pest have been reported in many European countries. For resistance management purposes, the neonicotinoid insecticide thiacloprid was widely introduced as a new mode of action for pollen beetle control. RESULTS: A number of pollen beetle populations collected in Germany, France, Austria, Great Britain, Sweden, Denmark, Finland, Poland, Czech Republic and Ukraine were tested for pyrethroid resistance using lambda‐cyhalothrin‐coated glass vials (adult vial test). Most of the populations tested exhibited substantial levels of resistance to lambda‐cyhalothrin, and resistance ratios ranged from < 10 to > 2000. A similar resistance monitoring bioassay for the neonicotinoid insecticide thiacloprid was developed and validated by assessing baseline susceptibility data for 88 European pollen beetle populations. A variation of less than fivefold in response to thiacloprid was detected. The thiacloprid adult vial bioassay is based on glass vials coated with an oil‐dispersion‐based formulation of thiacloprid, resulting in a much better bioavailability compared with technical material. Analytical measurements revealed a > 56 and 28 day stability of thiacloprid and lambda‐cyhalothrin in coated glass vials at room temperature, respectively. No cross‐resistance between thiacloprid and lambda‐cyhalothrin based on log‐dose probit–mortality data was detected. CONCLUSION: Pyrethroid resistance in many European populations of M. aeneus was confirmed, whereas all populations are susceptible to thiacloprid when tested in a newly designed and validated monitoring bioassay based on glass vials coated with oil‐dispersion‐formulated thiacloprid. Based on the homogeneous results, it is concluded that thiacloprid could be an important chemical tool for pollen beetle resistance management strategies in European winter oilseed rape. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Trialeurodes vaporariorum (Westwood), also known as the greenhouse whitefly, is a serious pest of protected vegetable and ornamental crops in most temperate regions of the world. Neonicotinoid insecticides are used widely to control this species, although resistance has been reported and may be becoming widespread. RESULTS: Mortality rates of UK and European strains of T. vaporariorum to a range of neonicotinoids and pymetrozine, a compound with a different mode of action, were calculated, and significant resistance was found in some of those strains. A strong association was found between neonicotinoids and pymetrozine, and reciprocal selection experiments confirmed this finding. Expression of resistance to the neonicotinoid imidacloprid and pymetrozine was age specific, and resistance in nymphs did not compromise recommended application rates. CONCLUSION: This study indicates strong parallels in the phenotypic characteristics of neonicotinoid resistance in T. vaporariorum and the tobacco whitefly Bemisia tabaci Gennadius, suggesting possible parallels in the underlying mechanisms. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
新烟碱类杀虫剂种子包衣防治麦蚜的可行性评价   总被引:3,自引:2,他引:1  
为评价不同新烟碱类杀虫剂处理种子防治小麦蚜虫的应用潜力,采用种子包衣法分别在室内及田间比较了吡虫啉、噻虫嗪、啶虫脒、烯啶虫胺、噻虫啉防治小麦蚜虫的效果及安全性,并测定了吡虫啉和噻虫嗪的持效、对天敌和小麦产量的影响及其在小麦籽粒中的最终残留量。结果表明,在2.4、3.6和4.8 g/kg种子剂量下,啶虫脒明显降低小麦出苗率,而其它药剂均无显著影响;至抽穗前烯啶虫胺、啶虫脒和噻虫啉对麦蚜的防效低,吡虫啉和噻虫嗪则均有较高防效,在58.17%以上,而在小麦抽穗扬花期防效下降,为33.57%~60.46%。吡虫啉和噻虫嗪对叶部麦蚜防效均相应高于穗部。与喷雾处理相比,吡虫啉、噻虫嗪各剂量种子包衣对瓢虫和蚜茧蜂等天敌昆虫影响小,在3.6、4.8 g/kg种子剂量下,小麦千粒重和产量无显著差异,且在小麦籽粒中的残留量低。表明吡虫啉和噻虫嗪种子包衣防治麦蚜的应用潜力大。  相似文献   

18.
A laboratory study was undertaken to investigate the leaf systemic properties and the translaminar aphicidal activity of two commercialised neonicotinoid (chloronicotinyl) insecticides. For that purpose [14C]imidacloprid was subjected to uptake and translocation studies in cabbage and cotton after foliar application. Foliar penetration and short-term translocation patterns of imidacloprid were similar in both plant species. Nevertheless imidacloprid penetrated twice as much into cabbage leaves as it did into cotton leaves. It showed a comparable translaminar behaviour and was entirely translocated acropetally, indicating its well-known xylem mobility. The translaminar and acropetal movement of imidacloprid and acetamiprid were quantified by simple laboratory bioassays using the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii (Glover), as typical homopteran pests for cabbage and cotton, respectively. A single dose (7.5 micrograms AI per leaf) applied to the upper leaf surface of cabbage and cotton was tested against aphids feeding on the lower leaf surface both close to and distant from the site of application 1, 5 and 12 days after treatment. The translaminar residual activity of imidacloprid on cabbage leaves was superior to that of acetamiprid, whereas its translaminar efficacy against A gossypii on cotton was inferior to that of acetamiprid. However, oral ingestion bioassays using an artificial double membrane feeding system revealed no significant differences in intrinsic activity between the two neonicotinoids tested.  相似文献   

19.
Wang Y  Chen J  Zhu YC  Ma C  Huang Y  Shen J 《Pest management science》2008,64(12):1278-1284
BACKGROUND: In recent years, outbreaks of the brown planthopper, Nilaparvata lugens (Stål), have occurred more frequently in China. The objective of this study was to determine the susceptibility of N. lugens to neonicotinoids and other insecticides in major rice production areas in China. RESULTS: Results indicated that substantial variations in the susceptibility to different insecticides existed in N. lugens. Field populations had developed variable resistance levels to neonicotinoids, with a high resistance level to imidacloprid (RR: 135.3–301.3‐fold), a medium resistance level to imidaclothiz (RR: 35–41.2‐fold), a low resistance level to thiamethoxam (up to 9.9‐fold) and no resistance to dinotefuran, nitenpyram and thiacloprid (RR < 3‐fold). Further examinations indicated that a field population had developed medium resistance level to fipronil (up to 10.5‐fold), and some field populations had evolved a low resistance level to buprofezin. In addition, N. lugens had been able to develop 1424‐fold resistance to imidacloprid in the laboratory after the insect was selected with imidacloprid for 26 generations. CONCLUSION: Long‐term use of imidacloprid in a wide range of rice‐growing areas might be associated with high levels of resistance in N. lugens. Therefore, insecticide resistance management strategies must be developed to prevent further increase in resistance. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
One of the major challenges in managing the Colorado potato beetle, Leptinotarsa decemlineata (Say) is its remarkable ability to develop resistance to virtually every insecticide that has ever been used against it. Resistance is particularly common throughout northeastern USA as far north as Maine. The first instances of resistance to imidacloprid have already been reported from several locations in New York, Delaware and southern Maine. Rotating insecticides with different modes of action may delay insecticide resistance, but successful implementation of this technique depends on a good understanding of resistance and cross-resistance patterns in populations of target pests. LC(50) values were measured for imidacloprid and thiamethoxam in Colorado potato beetle populations from a variety of locations in the USA and Canada using diet incorporation bioassays. The field performance of imidacloprid, thiamethoxam and clothianidin against imidacloprid-resistant beetles on a commercial potato farm in southern Maine was also evaluated. Correlation between LC(50) values for imidacloprid and thiamethoxam was highly significant, even when populations previously exposed to thiamethoxam were excluded from the analysis. There was no statistically detectable difference in the LC(50) values between populations exposed to both insecticides and to imidacloprid alone. Applications of neonicotinoid insecticides at planting delayed build-up of imidacloprid-resistant beetle populations on field plots by 1-2 weeks but failed to provide adequate crop protection. Consistently with bioassay results, there was also substantial cross-resistance among the three tested neonicotinoid insecticides. Results of the present study support the recommendation to avoid rotating imidacloprid with thiamethoxam as a part of a resistance management plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号