首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The neonicotinoid insecticide imidacloprid is the most important insecticide in hop cultivation in Germany. A laboratory study was undertaken to investigate its systemic properties and translaminar bioavailability in hop leaves. Radiolabelled [methylene-14C]imidacloprid was applied either alone or in combination with different additives onto leaves of several hop varieties. Uptake and translocation were evaluated 1 and 7 days after foliar application under greenhouse conditions. The uptake of imidacloprid into hop leaves was most pronounced in the first 24 h after application and only negligible amounts were taken up after this period. Significant differences in the quantitative uptake occurred when imidacloprid was combined with additives, such as Amulsol, Genapol C-100, Hasten and LI 700. The uptake of imidacloprid applied without additives was less than 10% 7 days after application, whereas the combination with LI 700 provided 70-80% uptake. Genapol C-100 and Amulsol induced considerable phytotoxicity at the application site. Comparing hop varieties revealed differences up to twofold in foliar penetration of imidacloprid. The translaminar and acropetal bioavailability of imidacloprid foliarly applied to hop leaves was determined by a laboratory bioassay using the damson hop aphid, Phorodon humuli (Schrank). Significantly higher mortality was observed with laboratory formulations containing imidacloprid and the additive LI 700. In contrast to these results from systemic tests, contact mortality at the application site was constantly high over the testing period of 7 days, highlighting the importance of this mode of entry for aphid intoxication.  相似文献   

2.
新疆地区棉蚜田间种群对10种杀虫剂的抗性   总被引:4,自引:0,他引:4  
棉蚜是影响新疆棉花种植业的主要害虫之一, 主要依赖化学防治。大量使用化学农药不仅污染环境, 而且对棉蚜产生极大的选择压, 加速抗药性发展。针对近年来新疆多地出现的棉蚜防效下降问题, 采用叶片药膜法, 检测了新疆五家渠、石河子、奎屯、博乐、伊犁和库尔勒地区棉蚜田间种群对10种常用杀虫剂的敏感性。结果表明, 博乐、库尔勒、石河子、五家渠、伊犁、奎屯6个地区的棉蚜田间种群对拟除虫菊酯类和有机磷类杀虫剂产生了极高水平的抗性, 其中对溴氰菊酯、高效氯氰菊酯和氧乐果的抗性分别达到728~2 494倍、353~4 932倍和2 137~9 501倍。对新烟碱类、阿维菌素类和氨基甲酸酯类杀虫剂产生了中、高水平抗性, 其中对吡虫啉、啶虫脒和噻虫嗪的抗性分别为85.2~412倍、221~777倍和122~1 095倍, 对阿维菌素和甲维盐的抗性分别为19.6~220倍和27.66~130倍, 对灭多威和丁硫克百威的抗性分别为91~292倍和6~148倍。其中五家渠棉蚜田间种群对丁硫克百威表现为低抗性, 这可能与该地区施药的频次及药剂种类有关。建议新疆不同区域棉田交替使用新烟碱类、抗生素类和氨基甲酸酯类杀虫剂。  相似文献   

3.
棉蚜在不同棉花品种上的取食行为及相对取食量的研究   总被引:5,自引:0,他引:5  
应用电动穿刺记录技术(EPG)对棉蚜在不同棉花品种上的取食行为进行了测定,结果记录到棉蚜的6种取食行为基本波型。棉花的多毛、红叶性状及抗、感水平对棉蚜的取食都有显著的影响。与CK非洲E40相比,多毛可以显著降低棉蚜的取食周期E2,并可显著延长第1非取食周期和增加蚜虫口针的刺探频率。棉蚜在多毛品种上的取食周期占总时间的6.0%,仅为CK品种的1/2。棉蚜在红叶棉上取食周期E2占总时间的百分率(10%)要显著低于黄叶棉品种(15%)(P<0.01)。而棉蚜在抗、感品种间的取食周期E2及取食前期波型C的周期差异也达到了极显著水平(P<0.01)。用同位素液闪技术测定了棉蚜在抗、感品种上的相对取食量,结果显示棉蚜在抗蚜品种上相对取食量也明显低于感蚜品种,并且随着取食周期的增长,抗、感品种之间比值差异更大。  相似文献   

4.
丁建朋  韩英  韩旭  尚娇  姚永生 《植物保护》2020,46(6):270-275
本文采用浸叶生测法和田间活性试验测定了棉蚜和棉长管蚜对吡虫啉?氟啶虫酰胺?吡蚜酮的敏感性?结果显示:阿拉尔?阿瓦提?图木舒克三地棉蚜对吡虫啉的敏感性低于棉长管蚜, 棉蚜和棉长管蚜对氟啶虫酰胺和吡蚜酮的敏感性无明显差异?在田间试验中, 施用吡虫啉后三地棉长管蚜的虫口减退率均显著高于棉蚜, 施用氟啶虫酰胺和吡蚜酮1 d后三地棉长管蚜和棉蚜的虫口减退率存在显著差异, 3 d和7 d后均无显著性差异, 虫口减退率均分别达到80%以上和90%以上?研究结果可为防治棉花蚜虫合理施药提供参考?  相似文献   

5.
氟啶虫胺腈对棉蚜的生物活性及对棉花的安全性   总被引:4,自引:0,他引:4  
本文通过叶片浸渍法研究了氟啶虫胺腈对棉蚜的室内活性,同时分析了其对棉花的安全性。室内毒力测定结果表明,氟啶虫胺腈处理棉蚜24h的LC50和LC90为1.98mg/L和26.02mg/L,显著低于吡虫啉的8.69mg/L和132.68mg/L,毒效比达4.39;处理48h后,氟啶虫胺腈对棉蚜仍表现出很高的杀虫活性,且显著高于吡虫啉。棉花安全性试验结果表明,在使用浓度40~160g/hm2范围内喷施500g/kg氟啶虫胺腈水分散粒剂,对棉花不同时期的叶色、株高、果枝层以及棉蕾脱落都未造成显著性的影响。  相似文献   

6.
为有效防控厚皮甜瓜细菌性果斑病的发生,提出一套综合防控技术,通过田间开展各单项防控技术的重要性试验,建立标准化综合防控技术体系。结果表明:各单项技术可提高对细菌性果斑病的防效。与对照相比,72%农用硫酸链霉素可溶粉剂浸种可使防效提高16%,病果率降低3%;标准化喷药能使防效提高17%以上,病果率降低3.1%;整枝打杈前后进行防控能使防效提高39%以上;厚皮甜瓜整个生育期不浇水,能够减少病果的数量;在此基础上组装而成的标准化综合防控技术体系防效达89.2%以上,病果率仅为2%。  相似文献   

7.
棉蚜对吡虫啉抗性的初步研究   总被引:1,自引:1,他引:1       下载免费PDF全文
李菁  韩召军 《农药学学报》2007,9(3):257-262
用吡虫啉对棉蚜进行室内抗性筛选,用药处理25次后抗性是筛选前的20.03倍;2007年对田间棉蚜进行抗性调查,发现不同地区种群对吡虫啉的抗性差异显著,江苏南京种群最为敏感,河南安阳、山东泰安和北京地区棉蚜与之相比,抗性分别为2.21、7.63和9.53倍;抗、感品系解毒酶活力分析发现,抗性品系的谷胱甘肽S-转移酶活性增加很少(比活力1.12倍),但酯酶活力显著高于敏感品系(比活力1.71倍);增效试验结果表明,顺丁烯二酸二乙酯(DEM)在抗、感品系中对吡虫啉均没有明显的增效作用,而磷酸三苯酯(TPP)和增效醚(PBO)虽然在敏感品系中对吡虫啉的增效作用较小(SR 1.24和1.29),但在抗性品系中的增效作用显著增高(SR 2.13和1.74);此外还发现,吡虫啉处理可提高棉蚜群体的酯酶活力。由此认为,棉蚜至少具有对吡虫啉产生中等水平抗性的风险,其抗性可能是由于棉蚜的酯酶和P450单加氧酶的解毒能力提高所致。  相似文献   

8.
北疆地区棉蚜对不同杀虫剂敏感度水平测定   总被引:4,自引:0,他引:4  
为了解北疆不同地区棉蚜种群对不同类型杀虫剂的敏感度水平,科学指导北疆地区棉蚜的化学防治,利用FAO推荐的叶片浸渍法(1980)测定北疆地区4个棉蚜田间种群对4类杀虫剂的敏感性.结果表明,新农大种群对杀虫剂的敏感水平最高,不同类型杀虫剂的毒力大小顺序为:新烟碱类>有机磷类>抗生素类>拟除虫菊酯类.安宁渠种群较石河子种群更为敏感.石河子垦区内的两个不同种群对菊酯类处于相对敏感状态;对有机磷类产生了明显抗药性,147团种群对辛硫磷的相对抗性倍数为951.8倍,新湖农场种群更达到了1236.9倍;147团种群和新湖种群对啶虫脒亦产生了明显的抗药性,相对抗性倍数分别为134.4倍和270.0倍,但对吡虫啉的敏感度较高.石河子垦区应限制使用新烟碱类的啶虫脒和有机磷类杀虫剂,以减缓棉蚜抗性的发展.  相似文献   

9.
本文报道一株拟青霉代谢产物杀虫和生理活性的测定结果。室内试验表明:该菌株代谢产物对棉蚜、山植叶螨和菜青虫都有杀虫活性,以对棉蚜的杀虫效果最好,72小时棉蚜死亡率可达88.4%。田间喷雾处理48小时后,棉蚜死亡率可达86.4%。该菌株的代谢产物还具有一定生理活性,用小麦芽鞘切段伸长试法和黄瓜子叶扩张试法的测定表明,该代谢产物具有类似生长素和细胞分裂素的作用,值得进一步研究。  相似文献   

10.
Shi X  Jiang L  Wang H  Qiao K  Wang D  Wang K 《Pest management science》2011,67(12):1528-1533
BACKGROUND: Imidacloprid has been a major neonicotinoid insecticide for controlling Aphis gossypii (Glover) (Homoptera: Aphididae) and other piercing–sucking pests. However, the resistance to imidacloprid has been recorded in many target insects. At the same time, cross‐resistance of imidacloprid and other insecticides, especially neonicotinoid insecticides, has been detected. RESULTS: Results showed that the level of cross‐resistance was different between imidacloprid and tested neonicotinoid insecticides (no cross‐resistance: dinotefuran, thiamethoxam and clothianidin; a 3.68–5.79‐fold cross‐resistance: acetamiprid, nitenpyram and thiacloprid). In the study of sublethal effects, imidacloprid at LC20 doses could suppress weight gain and honeydew excretion, but showed no significant effects on longevity and fecundity of the imidacloprid‐resistant cotton aphid, A. gossypii. However, other neonicotinoid insecticides showed significant adverse effects on biological characteristics (body weight, honeydew excretion, longevity and fecundity) in the order of dinotefuran > thiamethoxam and clothianidin > nitenpyram > thiacloprid and acetamiprid. CONCLUSION: The results indicated that dinotefuran is the most effective insecticide for use against imidacloprid‐resistant A. gossypii. To avoid further resistance development, the use of nitenpyram, acetamiprid and thiacloprid should be avoided on imidacloprid‐resistant populations of A. gossypii. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
苍耳不同分离物对害虫的拒食和忌避活性   总被引:3,自引:1,他引:3       下载免费PDF全文
为跟踪分离苍耳的活性成分,对苍耳叶和果实的甲醇提取物进行了液-液萃取分离,测试各萃取分离物对小菜蛾(Plutella xylostella)、菜青虫(Pieris rapae)和桃蚜(Myzus persicae)的拒食、忌避(或产卵忌避)活性以及对其化蛹和羽化的影响。结果显示,苍耳的乙酸乙酯分离物较之于甲醇水分离物具有更高的活性。在0.05 g/mL处理浓度下,苍耳叶乙酸乙酯分离物对菜青虫和小菜蛾幼虫选择性拒食率高达100%和44.13%,对菜青虫非选择性拒食率为94%,对小菜蛾的选择性产卵忌避率都在50%以上,对桃蚜的选择性忌避率高于70%;同时,苍耳果实乙酸乙酯分离物处理叶片后,菜青虫幼虫无一化蛹,小菜蛾高龄幼虫发育为成虫的比率仅为对照的13.80%。以上结果提示,苍耳的有效活性成分主要存在于乙酸乙酯分离相中,对菜青虫的作用效果好于小菜蛾。  相似文献   

12.
为明确山东省棉蚜对新烟碱类杀虫剂的抗性水平,采用毛细管微量点滴法测定了泰安、聊城和东营3个田间种群及1个敏感种群对吡虫啉、烯啶虫胺、啶虫脒、噻虫嗪、噻虫啉、噻虫胺6种新烟碱类杀虫剂的敏感性,同时测定了磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)和增效醚(PBO)3种酶抑制剂的增效作用。结果表明:泰安棉蚜种群对烯啶虫胺的抗性倍数为16.95,处于中等抗性水平,对吡虫啉和啶虫脒的抗性倍数分别为5.69和9.57,已产生低水平抗性,对噻虫胺、噻虫嗪和噻虫啉的抗性倍数均小于3.0,仍较敏感;聊城棉蚜种群对吡虫啉、啶虫脒和噻虫嗪的抗性倍数分别为28.51、25.88和18.16,属中等抗性水平,对噻虫啉和噻虫胺的抗性倍数分别为6.01和6.37,已产生低水平抗性,对烯啶虫胺仍处于敏感阶段;东营棉蚜种群对吡虫啉、啶虫脒和噻虫胺的抗性倍数分别为37.95、21.52和12.95,已产生中等水平抗性,对噻虫啉、烯啶虫胺和噻虫嗪的抗性倍数分别为7.07、6.38和4.75,处于低水平抗性阶段。多功能氧化酶抑制剂PBO和羧酸酯酶抑制剂TPP对6种供试新烟碱类杀虫剂的增效作用明显,谷胱甘肽-S-转移酶抑制剂DEM对这6种药剂也具有一定的增效作用。研究表明,山东省泰安等3地区棉蚜种群对6种新烟碱类杀虫剂均产生了不同程度的抗药性,多功能氧化酶和羧酸酯酶可能在棉蚜对该类杀虫剂的抗性中起主要作用,谷胱甘肽-S-转移酶可能也具有一定的作用。  相似文献   

13.
Laboratory bioassays applying the neonicotinoid insecticides imidacloprid, acetamiprid and nitenpyram against clones of the peach-potato aphid Myzus persicae (Sulzer) demonstrated that these compounds effectively circumvent the known carboxylesterase, modified acetylcholinesterase (MACE) and knock-down (kdr) insecticide resistance mechanisms in this species. However, some clones showed cross-tolerance (up to 18-fold) of these compounds relative to susceptible standards. A survey assessing the frequency of neonicotinoid tolerance in M persicae in the UK, based on samples collected from the field and glasshouses between 1997 and 2000, showed that such tolerance is still rare. Experiments on neonicotinoid-susceptible and -tolerant populations of M persicae under simulated field conditions in the laboratory showed that, although the latter were well controlled by imidacloprid applied at recommended application rates, they were more likely to survive and reproduce when this compound was applied at lower concentrations. Such conditions are probably periodically present in imidacloprid-treated field and glasshouse crops. Selection favouring tolerant forms of M persicae could lead to increases in their frequency and the evolution of more potent resistance to neonicotinoids.  相似文献   

14.
Duration of systemic pesticide activity under field conditions has wide implications for pest management. Our aim was to determine the duration of activity of systemic insecticides commonly used in cultivated tobacco (Nicotiana tabacum) by measuring the levels of insect infestations on field plots and effects on reproduction and survival of the green peach aphid (Myzus persicae) in controlled bioassays using field grown leaves. Plants were treated with different concentrations of two systemic neonicotinoid pesticides, imidacloprid and thiamethoxam, and grown in small field plots. Our results show that these materials are effective under field conditions against aphids for at least 13 weeks after transplant. Pesticides also affected aphid reproduction and nymph survival in bioassays, although some aphids survived on pesticide-treated leaves. We also observed that leaf age affected aphid survival. We showed that neonicotinoids were very effective against M. persicae, aphids are a useful organism to assess pesticide efficacy early in the growing season, but plant characteristics are more important than pesticide concentration in the second half of the growing season.  相似文献   

15.
BACKGROUND: The efficacy of systemic applications of imidacloprid for the management of avocado thrips and avocado lace bug was determined in field trials. Following insecticide treatment by chemigation, leaves of appropriate age for each insect were sampled over a 6 month period and used for bioassays. Imidacloprid residues were measured by ELISA in leaves used for bioassays to determine concentrations of insecticide that were toxic to both pests. RESULTS: The uptake of imidacloprid into treated trees was extremely slow, peaking in the current year's leaf flush at only 8 ng cm?2 leaf tissue after 15 weeks. Avocado thrips mortality in bioassays with young flush leaves, the preferred feeding substrate for this insect, was minimal, indicating that imidacloprid concentrations were below threshold levels needed for effective control. Residues present in older leaves, which are preferred by the avocado lace bug, were higher than in young flush leaves, and provided good control of this pest. Probit analysis of bioassay data showed that the avocado lace bug (LC50 = 6.1 ng imidacloprid cm?2 leaf tissue) was more susceptible to imidacloprid than the avocado thrips (LC50 = 73 ng imidacloprid cm?2 leaf tissue). CONCLUSIONS: In spite of the slow uptake of imidacloprid into avocado trees, the levels of imidacloprid would be sufficient to control avocado lace bug infestations. In contrast, the slow uptake would be problematic for avocado thrips control because inadequate levels of insecticide accumulate in new flush foliage and would allow avocado thrips populations to build to levels that would subsequently damage developing avocado fruit. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
With a combination of biological, analytical, electrophysiological, and video-optical methods, it was possible to show that low concentrations of the new chloronicotinyl insecticide, imidacloprid, strongly affect the behaviour of Myzus persicae (Sulz.), leading eventually to the death of the aphids. Tests to elucidate the biological properties were performed under laboratory conditions with cabbage leaf petioles placed in insecticidal solutions over different periods of time. LC15(24h) values were considered as low concentrations and calculated for imidacloprid and pirimicarb, respectively. Imidacloprid at low concentrations depressed the honeydew excretion of apterous adults of M. persicae by almost 95% within 24 h without affecting the vitality of the majority of aphids, whereas, at equitoxic concentrations, pirimicarb showed much weaker effects on honeydew excretion, which strongly coincided with mortality. In choice experiments with alate morphs of M. persicae over 48 h, their larvae almost always occurred on the untreated control leaf, and were not found on the leaf which was treated systemically with low concentrations of imidacloprid. Apterous aphids placed on cabbage leaves systemically treated with low concentrations of imidacloprid showed nearly the same decrease in weight as untreated starving aphids, suggesting that their death was caused by starvation. Aphids that were moved from imidacloprid-treated to untreated leaves after 24 h began feeding on the latter and showed a steady increase in weight and honeydew production. This suggests that the behavioural response is reversible. Aphids on pirimicarb-treated (equitoxic dose) leaves showed no decrease in weight. Electrical penetration graphs revealed that M. persicae on artificial membranes containing imidacloprid probed more often before feeding than aphids on control sachets. Time-lapse videofilming of apterous adults placed on cabbage leaves revealed a migration from the leaf treated with low concentrations of imidacloprid to an untreated leaf. From the results of these experiments and the observed symptomatology it is possible to postulate two different and dose-dependent modes of action of imidacloprid on M. persicae: (1) the well-known mode of action with visually obvious irreversible symptoms (paralysis, tremor, uncoordinated leg-movement) at field rates, and (2) the reversible starvation response as an antifeedant effect, which is not coupled with typical symptoms of neuronal disorder, at lower concentrations.  相似文献   

17.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The efficacies of four systemic neonicotinoid insecticides applied to potted avocado trees at manufacturer-recommended rates were assessed against the avocado thrips, Scirtothrips perseae Nakahara. At the time of treatment, fully expanded first-flush young leaves were tagged for identification, and a proportion of these leaves was used in bioassays with second-instar thrips. At 7 weeks post-treatment, a second flush of leaves had fully expanded on the trees, and these leaves were included in additional bioassays comparing avocado thrips mortality on both first- and second-flush leaves. In bioassays with first-flush leaves, imidacloprid (273 mg AI pot(-1)) was the most effective insecticide, providing at least 70% mortality of thrips for 14 weeks. Thiamethoxam (137 mg AI pot(-1)), clothianidin (109 mg AI pot(-1)) and dinotefuran (241 mg AI pot(-1)) provided good control in bioassays that were conducted within 4 weeks of treatment, but thereafter their efficacies were inconsistent. In bioassays with second-flush leaves, imidacloprid provided at least 70% mortality up to 9 weeks after the insecticide application. Thereafter, mortality declined to 30% or lower. Bioassays with second-flush leaves collected from trees treated with thiamethoxam, clothianidin and dinotefuran resulted in unacceptably low thrips mortality. Monitoring of imidacloprid and thiamethoxam residues by ELISA showed that the greater persistence of imidacloprid in both first and second leaf flushes was due to a steadier uptake of this material. Although thiamethoxam residues rose quickly within the first leaf flush, levels had already begun to dissipate by the time the second leaf flush had started to develop.  相似文献   

19.
在分析棉花品种抗蚜性的生化机制的基础上,根据棉蚜与棉花的种间互作关系,研究了不同品种类型的棉苗因棉蚜为害而引起的生理应激反应及由此对抗蚜性表现及棉蚜种群数量消长所产生的影响。研究发现棉株在棉蚜为害条件下,体内抗蚜物质如单宁,脯氨酸和可溶性糖含量较大幅度上升,且其增长幅度,扰蚜品种明显高于感蚜品种,同时叶片颜色明显加深。讨论分析了这种生理反应即诱导抗蚜性对棉蚜种群动态可能产生的调节作用。  相似文献   

20.
Liu Z  Dai Y  Huang G  Gu Y  Ni J  Wei H  Yuan S 《Pest management science》2011,67(10):1245-1252
BACKGROUND: The neonicotinoids imidacloprid, imidaclothiz, acetamiprid and thiacloprid consist of similar structural substituents but differ considerably with respect to soil use. Therefore, the effects of soil microbial activity on the degradation and bioefficacy persistence of the four neonicotinoids were evaluated. RESULTS: In unsterilised soils, 94.0% of acetamiprid and 98.8% of thiacloprid were degraded within 15 days, while only 22.5% of imidacloprid and 25.1% of imidaclothiz were degraded over a longer period of 25 days. In contrast, in sterilised soils, the degradation rates of acetamiprid and thiacloprid were respectively only 21.4% and 27.6%, whereas the degradation rates of imidaclothiz and imidacloprid were respectively 9.0% and almost 0% within 25 days. The degradation products of imidacloprid and imidaclothiz were identified as olefin, nitroso or guanidine metabolites, the degradation product of thiacloprid was identified as an amide metabolite and no degradation product of acetamiprid was detected. A bioefficacy assay revealed that the bioefficacy and persistence of imidacloprid, imidaclothiz, acetamiprid and thiacloprid against horsebean aphid A. craccivora were related to their degradation rate and the bioefficacy of their degradation products in soil. CONCLUSION: Soil microbial activity played a key role in the bioefficacy persistence of neonicotinoid insecticides and therefore significantly affected their technical profile after soil application. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号