首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
应用数量遗传学原理,以加工黄瓜为试材,研究F1、F2、BP1、BP2、P1和P2共6个世代可溶性总蛋白质含量、可溶性总糖含量和肉径比3个主要品质性状的遗传效应.结果表明:可溶性总蛋白质含量与肉径比的遗传符合加性-显性模型,基因效应均以加性效应为主,可溶性总糖含量的遗传符合加性-显性-上位性模型.可溶性总蛋白质含量的狭义遗传力较低,对该性状的选择只能在高世代进行;而肉径比的狭义遗传力较高,对该性状的选择可在较早世代进行.  相似文献   

2.
【目的】明确爆裂玉米膨爆性状的遗传方式,为爆裂玉米育种和分子标记辅助选择(MAS)提供理论依据。【方法】以爆裂玉米杂交组合吉爆902(吉812×吉704)的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代群体为材料,应用植物数量性状主基因+多基因混合遗传模型,对其膨爆性状进行多世代联合分析。【结果】爆裂玉米吉812×吉704组合的爆花率受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制遗传,该杂交组合的B1∶2、B2∶2和F2∶3群体爆花率的主基因遗传率分别为74.988 2%,78.345 1%和62.332 9%,多基因遗传率分别为3.118 9%,3.515 8%和6.115 6%。2对主基因中,加性效应为负值,显性效应为正值。第1对主基因的加性效应绝对值和显性效应值略大于或大于第2对主基因的相应效应值,2对主基因显性效应互作显著高于加性效应互作;第1对主基因加性×第2对主基因显性的互作效应值小于第2对主基因加性×第1对主基因显性的互作效应值。膨化倍数受1对加性主基因+加性-显性多基因控制,主基因遗传率较低,主基因加性效应d=-0.286 8。膨化体积受多基因控制,B1∶2、B2∶2和F2∶3家系世代多基因遗传率分别为10.49%,65.52%和28.99%,同时受环境影响较大。【结论】爆花率性状主基因遗传率较高,宜在早代对爆花率性状进行选择;膨化倍数性状主基因的遗传率较低,育种时应注重多基因的积累;膨化体积性状B2∶2家系世代多基因遗传率较高,同时受环境影响也较大,在育种时可以采用轮回选择及早代选择来提高育种效果。  相似文献   

3.
采用加性-显性遗传模型,分析36个杂交红麻产量性状遗传效应与杂种优势.结果表明:株高与皮厚主要受显性效应控制;现蕾天数、鲜茎重、鲜皮重、干皮重受加性效应与显性效应共同控制;始果高度、茎粗则既不受加性效应影响,也不受显性效应影响;产量性状的狭义遗传率均较低.株高、皮厚、茎粗、始果高度等产量性状的狭义遗传率较低,育种中宜在高世代中选择.除现蕾天数外,其他产量性状的平均优势(Hpm)与超亲优势(Hpb)预测值均有正值,其中鲜皮重、干皮重杂种优势明显.F1代的生育期与产量呈负相关.株高与始果高度、茎粗、鲜茎重、鲜皮重、干皮重等性状以及鲜茎重、鲜皮重、干皮重与其他性状间均呈显著或极显著相关.  相似文献   

4.
结球甘蓝主要商品性状与农艺性状的遗传相关分析   总被引:2,自引:0,他引:2  
以6个甘蓝亲本进行完全双列杂交,采用加性-显性遗传模型对结球甘蓝的主要商品、农艺性状进行遗传分析。结果表明:各性状的遗传同时受加性效应和显性效应的作用,株高、外叶数主要受加性效应控制;开展度、单球重、帮叶比、中心柱/球高主要受显性效应控制。相关分析表明,开展度-株高、开展度-单球重、外叶数-帮叶比等成对性状成显著正相关,利用株高可对帮叶比、中心柱/球高进行间接选择。  相似文献   

5.
不结球白菜株高性状主基因+多基因遗传分析   总被引:7,自引:0,他引:7  
应用主基因 多基因6个世代联合分离分析方法对不结球白菜SI×秋017组合的株高性状进行了分析.结果表明,SI×秋017组合的株高性状遗传受1对负向完全显性主基因 加性-显性多基因控制,主基因加性效应为5.79;多基因加性效应为-7.85,多基因显性效应为14.95;B1、B2和F2世代株高的主基因遗传率分别为33.28%、37.05%和51.68%;多基因遗传率分别为5.84%、12.67%和1.34%,说明F2世代株高表现出较高的主基因遗传率,并受环境影响.对SI×秋017组合株高性状的改良要以主基因为主,同时注意环境的影响.  相似文献   

6.
棉花株型性状的遗传分析   总被引:5,自引:0,他引:5  
探讨棉花株型性状的遗传规律,为通过株型育种提高棉花产量提供理论依据,该研究应用主基因+多基因混合遗传模型和分析方法,对以短季棉品种百棉2号和中晚熟材料TM-1形成的P1、P2、F1、B1、B2、F2 6个群体,进行了棉花株型性状的遗传研究.结果显示:总果枝数、株高/果枝长度和主茎节间长度受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制(E-0);有效果枝数受2对加性-显性-上位性主基因控制(B-1);株高受1对加性-显性主基因+加性-显性-上位性多基因控制(D-0);果枝长度受1对加性主基因+加性-显性多基因控制(D-2);果枝节间长度受加性-显性-上位性多基因控制(C-0);总果节数受2对加性主基因+加性-显性多基因控制(E-3);果枝夹角受1对完全显性主基因+加性-显性多基因控制(D-3).总果枝数、株高、主茎节间长度和总果节数以主基因遗传为主;果枝夹角以多基因遗传为主;有效果枝数属于典型的主基因遗传;果枝节间长度属于典型的多基因遗传;果枝长度、株高/果枝长度以主基因和多基因遗传并重.表明:对以主基因遗传或以主基因遗传为主的性状可采用单交重组或简单回交转育的方法;对以多基因遗传或以多基因遗传为主的性状可采用聚合回交或轮回选择累积增效基因的方法;对以主基因和多基因遗传并重的性状要根据其主基因和多基因的相对效应大小分别考虑,最终达到主基因、多基因同时得到改良的育种效果.  相似文献   

7.
冬小麦数量性状遗传模型分析   总被引:2,自引:0,他引:2  
对冬小麦列杂交试验资料进行统计分析的结果表明:株高、主穗长、穗粒数和单株粒重4个数量性状基因作用方式符合加性--显性效应遗传模型,显性程度除单株粒重为超显性遗传外,其余为部分显性;小穗数主要受加性效应控制,不存在显著的显性效应和上位性效应。同时还对供试亲本显隐性基因分布、性状选择适宜时期及共育种潜力等进行了讨论。  相似文献   

8.
绿豆主要株型性状的遗传   总被引:1,自引:1,他引:0  
为探索绿豆主要株型性状的遗传规律,进而为选育株型紧凑的直立型绿豆品种提供理论依据,以半蔓生型品种‘洮绿218’和直立型品种‘吉绿10号’为亲本配制杂交组合,采用主基因+多基因混合遗传模型分析方法对该组合6世代遗传群体(P_1、P_2、F_1、F_2、B_1和B_2)株高、分枝数、主茎节数和分枝夹角进行遗传分析。结果表明:株高、分枝数和分枝夹角均受2对加性-显性-上位性主基因+加性-显性多基因控制(E-1模型),其中,控制株高的2对主基因加性效应值均为7.27,显性效应分别为0.03和-0.13,主基因遗传率在B_1、B_2和F_2中分别为59.35%、8.23%和41.45%,多基因遗传率分别为2.40%、0%和0%;控制分枝数的2对主基因加性效应值均为0.33,显性效应分别为-0.74和-1.55,主基因遗传率在B_1、B_2和F_2中分别为3.26%、7.69%和53.10%,多基因遗传率分别为51.39%、56.36%和0%;控制分枝夹角的2对主基因加性效应值均为2.10,显性效应分别为-0.94和-1.38,主基因遗传率在B_1、B_2和F_2中分别为48.11%、32.45%和64.54%,多基因遗传率均为0%。主茎节数的最适宜模型为D-0模型(1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型),主基因加性效应值和显性效应值分别为0.10和-0.01,主基因遗传率在B_1、B_2和F_2中分别为1.39%、1.27%和0.63%,多基因遗传率分别为65.39%、10.81%和47.08%。综合表明,‘洮绿218’ב吉绿10号’组合的分枝数和分枝夹角的总遗传率较大,应在早世代进行选择;株高和分枝夹角主要受主基因控制,分枝数和主茎节数大部分世代主要受多基因控制;在绿豆株型育种中要综合考虑主基因、多基因和环境因素的影响。  相似文献   

9.
利用植物数量性状主基因+多基因混合遗传模型,以高淀粉玉米杂交组合"郑单958"的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代为材料,多世代联合分析了高淀粉玉米主要性状的遗传效应。结果表明:穗长、穗位高由多基因控制;百粒重、单穗重、行粒数、株高由1对加性主基因+加性-显性多基因控制;秃尖长由1对加性-显性主基因+加性-显性多基因控制。  相似文献   

10.
小麦收获指数遗传及其与农艺性状的相关分析   总被引:3,自引:0,他引:3  
利用8个不同收获指数小麦品种双列杂交的F1及其亲本,探讨小麦收获指数的遗传及其与主要农艺性状的相关。结果表明:宁麦9号收获指数的一般配合力最好,能极显著地提高杂种后代的收获指数;小麦收获指数的遗传符合加性-显性模型,受加性和显性效应的作用,显性程度为完全显性到超显性;控制收获指数遗传的增效等位基因为显性,增减效等位基因频率在亲本中的分配无明显差异;扬麦9号和郑9023具有最多控制收获指数遗传的显性基因,收获指数可能受1对主效基因的控制,狭义遗传力较高。相关分析表明,收获指数与株高、主穗长、每穗粒数、千粒重、生物量呈极显著正相关。  相似文献   

11.
【目的】研究水稻产量相关性状的遗传效应、遗传率和遗传相关,旨在加深理解水稻产量相关性状遗传体系。【方法】以几个重要的恢复系和不育系为材料,采用加性-显性-母体效应遗传模型(ADM模型)和统计分析方法研究水稻产量相关性状遗传效应、遗传率和遗传相关。【结果】研究表明水稻产量相关性状同时受加性效应、显性效应和母体效应的控制,穗总粒数、单株总粒数、千粒重和单株重以加性效应占主导,株高和单株有效穗则由显性效应和母体效应共同控制;狭义遗传率以千粒重的表现最高,单株重次之;不育系中粤泰A能增加单株有效穗,Y58S和中9A能增加单株总粒数;恢复系中绵恢725能增加穗总粒数、单株粒数、单株重和千粒重;此外,遗传相关研究表明通过增加穗总粒数和单株总粒数可以达到增加单株重的目的,而要选到穗总粒数较多的材料有效穗不能太多。【结论】在水稻产量相关性状育种实践中,应根据水稻产量相关性状的遗传方式不同采用不同的选育方法。穗总粒数、单株总粒数、千粒重、单株重和播始历期可在常规聚合育种上通过世代综合选择,使加性效应得以稳定遗传,而株高和单株有效穗在杂种优势利用上有一定的潜力。千粒重和单株重早期世代选择效果较好,株高和单株有效穗高代选择比较适宜。  相似文献   

12.
[目的]对粳不籼恢亚种间杂交稻株高与节间性状的遗传效应与杂种优势进行分析。[方法]以6个粳型不育系与9个偏籼型广亲和恢复系进行不完全双列杂交,采用加性-显性遗传模型及其统计分析方法,对粳不籼恢亚种间杂交稻的株高与节间性状进行遗传研究。[结果]粳不籼恢亚种间杂交稻的株高、穗长和节间1长性状主要受到加性效应的控制,而节间3长、节间4长和节间5长性状以显性效应为主。株高、穗长、伸长节间数和大多数节间长度性状的狭义遗传率和广义遗传率均达显著水平。株高与穗长、各节间长度和伸长节间数成对性状之间的表现型、基因型、加性和显性相关系数正值均达到显著水平,其余各成对性状之间大都表现为显著的正向相关。杂种优势分析表明,节间3长、节间4长、节间5长和节间6长性状的群体平均优势和群体超亲优势正值较大,均达极显著水平,株高性状的群体平均优势正值也达极显著水平。[结论]该研究为粳不籼恢亚种间杂交稻株高及节间性状的遗传改良和杂种优势利用提供了更可靠的理论依据。  相似文献   

13.
甘蔗11个亲本和以5×6不完全双列杂交(Ncdesign )遗传设计配制的30个杂交组合的实生苗,两年的7个主要性状的基因加性-显性与环境互作模型(ADE)遗传分析表明:(1)各性状不仅普遍存在基因加性效应和显性效应,而且还普遍存在基因型×环境互作,但不同的性状其加性效应和显性效应所起的作用不同;(2)不同性状遗传率大小不同,所受环境的影响也不同,较大的互作狭义遗传率受环境的影响较大,一般而言,除锤度外,其余性状的遗传率都是普通狭义遗传率为主,互作狭义遗传率较小;(3)所有的性状之间都存在着遗传相互关系,多数性状之间以加性和显性相关为主,环境条件对各性状遗传相关的影响主要表现为显性×环境互作相关。  相似文献   

14.
【目的】株高和穗部性状是影响谷子产量的关键性状。探究谷子株高及穗部性状表型变异的遗传规律,为相关性状的遗传改良与基因定位提供参考依据。【方法】以谷子优质品种豫谷18为共同父本,分别与黄软谷和红酒谷杂交,构建2个分别包含250个家系的重组自交系F7群体(YYRIL和YRRIL)。采用主基因+多基因混合遗传模型,对YYRIL和YRRIL群体在2个环境下的株高、穗长、穗下节间长、穗码数、穗粒重等5个农艺性状的表型数据进行遗传分析。【结果】5个性状在所有环境中均表现连续变异且存在超亲分离现象,峰度和偏度绝对值小于1,近似正态分布,呈现数量性状的典型遗传特点。性状间相关性分析表明株高与穗长、穗下节间长在所有环境中均呈极显著正相关,穗码数与穗粒重呈极显著正相关。遗传模型分析显示YYRIL和YRRIL群体株高的最适遗传模型分别为PG-AI和PG-A多基因模型,多基因遗传率分别为95.15%和91.27%。2个群体穗码数的最适模型均为PG-AI,多基因遗传率为70.07%—71.58%。穗下节间长在2个群体的最适遗传模型分别为4MG-CEA和3MG-CEA,均为等加性主基因模型。穗下节间长在YYRIL群体的主基因遗传率为9.69%,4对主基因加性效应值相等,均为-0.34,具有负向效应;穗下节间长在YRRIL群体的主基因遗传率为45.78%,3对主基因加性效应值相等,均为1.17,具有正向效应。穗长在YYRIL群体的最适模型为MX2-ED-A,即2对显性上位主基因+加性多基因模型,主基因遗传率为43.56%,多基因遗传率为50.56%。控制穗长的2对主基因加性效应值分别为-1.21、1.68,多基因加性效应较小,为-0.0017;穗长在YRRIL群体的最适模型为MX2-AE-A,即2对累加作用主基因,加性多基因混合遗传模型;穗长的主基因遗传率为46.40%,多基因遗传率为46.91%。控制穗长的第1对主基因加性效应值为1.53,具有正向效应,第1对主基因加性×第2对主基因加性上位性互作效应值是0.60,多基因加性效应值为-0.47,表现为较低的负向遗传效应。穗粒重在YYRIL群体的最适遗传模型为MX2-ED-A;符合2对显性上位主基因+加性多基因模型,主基因遗传率为69.09%,多基因遗传率为12.08%;控制穗粒重的2对主基因加性效应值分别为0.58、5.82,以第2对主基因的加性效应为主,多基因加性效应值为-3.81。穗粒重在YRRIL群体的最适遗传模型为3MG-PEA,即3对部分等加性主基因遗传模型;穗粒重的主基因遗传率为81.10%,3对主基因加性效应值分别为-2.68、-2.68和2.66,前2对主基因的加性效应值相同,且均为负向效应。【结论】谷子株高、穗码数的最适遗传模型相似,均服从多基因遗传,遗传率较高,受环境影响较小;穗下节间长的遗传受主基因控制,主基因遗传率偏低,受环境影响较大,在栽培中应充分考虑环境因素;穗长遗传受主基因和多基因共同控制;穗粒重在2个群体均服从主基因遗传,主基因遗传率较高,可能存在主效QTL。  相似文献   

15.
花椰菜花球性状遗传效应分析   总被引:3,自引:0,他引:3  
以7个花椰菜亲本进行不完全双列杂交,采用朱军提出的加性-显性遗传模型,对花椰菜花球性状进行了遗传效应分析.结果表明,球重、球径、球高均主要受制于基因的显性效应,分别达69.1%、59.0%和60.2%.笔者还对各研究亲本加性效应值和F1组合显性效应值进行了预测.  相似文献   

16.
【Objective】 Panicle traits are important yield traits of wheat, occupying an important position and role in wheat yield composition. Carrying out genetic research on wheat panicle traits and analyzing its genetic mechanism provide theoretical and practical guidance for formulating high-yield breeding strategies and improving breeding efficiency. 【Method】 Based on the length of the main stem, the number of spikelets, the number of grains per spike, and the number of spikelets, the main gene + polygene mixed genetic model of quantitative traits was used to obtain the parental product 34 and the male parent under different ecological conditions. BARRAN and its derived F7:8, F8:9 generation recombinant inbred line population (RIL) were used for genetic model analysis and genetic parameter estimation of panicle traits to determine the number of genes controlling various traits, and to estimate genetic effect values and heritability. 【Result】The best genetic model for panicle length and spikelet number were B-2-1 (PG-AI), which was consistent with two pairs of linked major genes + additive-epistasis polygene genetic model. The polygenic heritability of spike length was 90.64%, the polygenic heritability of spikelet number was 89.52%, the average of environmental variation of spike length accounted for 9.39% in phenotypic variation, and the average of environmental variation of spikelet number accounted for 10.50% in phenotypic variation; Major gene heritability was 69.39%, Polygenes heritability rate was 29.94%, and the average environmental variation accounted for 2.18% in phenotypic variation. Additive effect value of the first pair of main genes controlling the number of spikes and the additive effect value of the third pair of major genes are equal, and the same was 4.56, which has a positive effect. The additive effect value of the second pair of major genes was the same as the additive effect of the first pair of major genes × the second pair of major genes × the third pair of major genes, both of which were -1.44, and are negative effects. The additive and additive × additive epistasis interaction values were equal to the additive and the second pair of major gene additions × the third pair of major gene additive epistatic interactions, both of which were -6.02. Additive and the first pair of major gene additive × the third pair of main gene additive epistatic interaction effect value is 0.18, the multi-gene additive effect value is 0.15, showing a lower positive genetic effect; H-1(4MG-AI) was best-fitting genetic model for the spikelet number traits, which showed that their inheritance was controlled by incorporating four major genes additive-epistasis genetic model. The heritability of the main gene was 81.50%. The additive effect values of the main genes in the first to fourth pairs were 0.22, 0.18, -0.20, and 0.24, respectively, the additive and epistatic interactions of the first pair of major genes × the first pair of major genes were -0.170, the additive effect value of the additive and the first pair of major genes × the third pair of major genes was 0.240. the additive effect value of the additive and the first pair of major genes × the fourth pair of major genes was -0.200, additive and the second pair of major genes × the third pair of major genes × additive effect value and additive and the second pair of major gene additive × fourth pair of major gene additive epistatic interaction value absolute value, the effect in contrast, the former value was 0.030, and the latter value was -0.030. The additive effect value of the additive and the third pair of major genes × the fourth pair of major genes was 0.060. 【Conclusion】The panicle traits of wheat are mainly polygenic genetic effects, which are in line with quantitative genetic characteristics and are susceptible to environmental influences. The number of spikelet grains has the genetic characteristics of the main gene. The main gene has high heritability and is affected by the environment. The number of spikelets can be used as a direct indicator to effectively improve the early selection of panicle traits, achieving single plant directional selection and improving breeding efficiency.  相似文献   

17.
用朱军的基因型×环境互作的加性、显性遗传模型(ADE)对11个甘蔗亲本,及以5×6不完全双列杂交配制的30个杂交组合实生苗的7个主要性状进行了分析。结果表明:(1)各性状普遍存在基因加性效应和显性效应及基因型×环境互作效应,但不同性状的加性效应和显性效应所起的作用不同;(2)不同性状的遗传率大小不同,受环境影响也不同,较大的互作狭义遗传率受环境影响较大,一般而言,除锤度外,其余性状的遗传率都以普通狭义遗传率为主,互作狭义遗传率较小;(3)所有性状之间都存在遗传相关,多数性状之间以加性和显性相关为主,环境条件对各性状遗传相关的影响主要表现为显性×环境互作相关。  相似文献   

18.
【目的】筛选与越橘果实贮藏性相关的性状并揭示其遗传规律,为越橘果实贮藏性改良育种提供依据。【方法】调查越橘果实的果蒂痕大小、果实硬度、可溶性固形物含量、酸含量、果实重量、果型指数、贮藏性等7个性状,通过相关性分析和主成分分析筛选与贮藏性相关的主要性状,利用正反交群体分析其遗传倾向。【结果】相关性分析和主成分分析结果表明,越橘果实贮藏性与果蒂痕性状呈极显著负相关(P<0.001),与果实硬度性状呈极显著正相关(P<0.01),二者是与蓝莓贮藏性相关的主要性状。越橘果实带柄和脱柄贮藏试验表明果蒂痕大小对越橘果实贮藏有重要影响。果蒂痕大小和果实硬度性状在正、反交群体中呈正态分布,表现为多基因控制的数量性状,变异系数均大于15%。正、反交群体果蒂痕大小趋近于亲本平均值,无父母本倾向,其广义遗传力(H2)在正、反交群体中分别为0.887和0.867,其遗传变异主要来自遗传效应,遗传潜能较大。正、反交群体果实硬度平均值均趋于低值亲本,即存在倾向于果实硬度变小的劣质遗传,H2在正、反交组合中分别为0.535和0.514,表明越橘果实硬度遗传效应较小,遗传不稳定,易受环境影响。【结论】越橘果实果蒂痕大小和果实硬度性状与贮藏性密切相关,其中果蒂痕性状呈趋中遗传,其遗传变异主要来自遗传效应,遗传潜能大,超高亲遗传不明显;果实硬度性状遗传受低值亲本影响较大,存在明显的劣质遗传倾向,遗传效应小,受环境影响大。  相似文献   

19.
早熟陆地棉主要性状配合力及杂种优势分析   总被引:1,自引:1,他引:0  
目的】筛选新疆自育的优良亲本及强优势杂交组合,为棉花新品种选育奠定基础。【方法】选用不同来源的早熟陆地棉亲本17个,按照6×11的NCⅡ设计组配不完全双列杂交,得到66个杂交组合,通过随机区组3次重复试验,分析F1产量和纤维品质的杂种优势和配合力。【结果】17个亲本的一般配合力(GCA)和特殊配合力(SCA)存在显著或极显著差异。产量和品质性状广义遗传力和狭义遗传力大多比较低,株高广义遗传力可达74.28%,狭义遗传力达51.5%,其次为衣分和马克隆值。供试组合中以籽棉产量竞争优势、中亲优势和超亲优势最高,平均值分别为5.49%、11.77%和8.97%;与产量密切相关的果枝数、衣分、衣指等性状在中亲优势和超亲优势中都呈明显的正向优势;在竞争优势中,以果枝数、籽棉产量、衣分、百粒重、衣指和马克隆值为正向优势。产量性状GCA高的亲本是B3(23-90),B4(42-34),A4(H1-4),A6(惠远1403),A9(新农早112);品质性状GCA高的亲本是B1(125-1),B3(23-90),A5(H7-143),A8(天云1133)。【结论】通过F1代对株高、衣分和马克隆值等性状的亲本进行选择效果较好;籽棉产量的杂种优势最高;A1×B5(10-101×72-47),A3×B1(48-33×125-1),A4×B1(H1-4×125-1),A8×B1(天云1133×125-1)等组合具有较大利用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号