首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
为了解隧道式挂面烘房干燥介质(空气)流向、流速、温度、相对湿度的动态变化及分布特征,明确干燥介质参数之间的影响,该研究以5排60 m隧道式烘房为研究对象,利用Kestrel 4500型多功能便携式气候仪在线动态分析挂面干燥过程中干燥介质的流向、流速、温度、相对湿度。结果表明,挂面干燥过程中,风速、温度和相对湿度在烘房的4个干燥区段之间存在显著性差异。隧道式烘房的空气流动分布不均匀,风向主要偏向排潮口一侧,风速则表现为锯齿状波动式降低;温度呈现先上升后下降的趋势,在30~45 m干燥区内最高,均值为45.55℃;相对湿度逐渐降低。风速显著影响烘房内的温度和相对湿度。在15~30 m和30~45 m干燥区内,风速与温度极显著正相关(P<0.01);在0~15 m、15~30 m和30~45 m 3个干燥区内,风速与相对湿度极显著负相关(P<0.01)。风速对烘房内的温度和相对湿度在各干燥区段的影响方向和大小有所不同。  相似文献   

2.
为降低冻干苹果能耗,同时获得具有良好外观的脱水产品,该研究将冷冻-热风联合干燥应用于苹果脱水加工,并从水分迁移角度探究此过程中产品的收缩机制。选取4个水分转换点(干基含水率分别为1.00、0.76、0.53和0.33 g/g)对苹果进行联合干燥处理,并对脱水产品收缩率、质构特性、微观结构、孔隙分布及样品在热风干燥阶段的水分迁移与分布进行测定及分析。结果表明,联合干燥样品的收缩情况显著(P<0.05)优于单一热风干燥样品,且转换点对样品收缩率影响较大(收缩率6%~45%),当转换点干基含水率低于0.53 g/g时,联合干燥样品没有出现明显的体积收缩现象。随着转换点干基含水率的升高,样品的收缩程度增大,并出现不同程度的中心塌陷,且孔隙率逐渐减小,但相应能耗降低。产品收缩主要发生在热风干燥过程的升速阶段,在此阶段样品自由水含量大幅减少,结合水与不易流动水未发生明显改变,样品内部水分在湿度差的作用下向表面迁移,这是导致联合干燥样品发生体积收缩的关键机制。该研究结果可为冷冻-热风联合干燥高效生产良好外观的脱水苹果提供数据支撑及理论参考。  相似文献   

3.
为解决常规干燥方式干燥效率不高、产品品质差等问题,缩短干燥时间,提高干燥产品的卫生质量,以太阳能为热源,根据农产品的干燥特性和热风干燥机理设计制造了生产用高效太阳能集热厢式干燥房。该新型太阳能干燥房采用厢式结构设计,引入强制-自然匀风排风技术和折返式双换热技术,研究表明太阳能干燥房中的日最高温升为12.5℃,日平均温升可达6.6℃,内部温度均匀,葡萄干燥时间可缩短至20d,葡萄干绿级品率较传统干制方法提高了48.43%,适用于果蔬、中药材等农副产品干燥领域。  相似文献   

4.
干燥介质相对湿度对胡萝卜片热风干燥特性的影响   总被引:2,自引:17,他引:2  
为了探究相对湿度和阶段降湿对热风干燥过程的影响,该文在干燥温度60℃、风速3.0 m/s条件下,研究了相对湿度(20%、30%、40%、50%)及第一阶段相对湿度50%保持不同时间(10、30、60、90 min),第二阶段相对湿度20%下,胡萝卜片的干燥特性和温度变化规律;利用Weibull分布函数对干燥曲线进行拟合并分析干燥过程,结合尺度参数估算水分有效扩散系数;基于复水比、色泽、干燥时间和能耗对不同相对湿度条件下的干燥过程进行评价。研究结果表明:相对湿度保持恒定条件下,干燥速率先上升后下降,且相对湿度越低干燥速率越大。降低相对湿度有利于缩短干燥时间,热风相对湿度20%比50%条件下干燥时间缩短了27.6%;分段降湿干燥条件下,热风相对湿度50%保持30min后降低为20%,其干燥时间比相对湿度恒定为20%条件下缩短了18.5%,干燥过程出现2个升速阶段;Weibull分布函数可以很好地描述胡萝卜恒定湿度和阶段降湿干燥过程。尺度参数α范围在1.864~3.635 h之间,形状参数β值在1.296~1.713之间,水分有效扩散系数在1.17×10-9~2.92×10-9 m2/s之间。对绿红值、复水率、能耗和干燥时间进行综合评价显示,热风相对湿度50%保持30 min干燥条件下绿红值最高为41.4,能耗相比于恒定相对湿度20%条件下减少了6.0%,复水比较高为3.81,综合评分较高为0.91。该文揭示了干燥介质相对湿度对胡萝卜片干燥特性的影响规律,对于优化干燥介质湿度控制策略以提高干燥速率和品质,降低干燥能耗提供了科学依据和技术支持。  相似文献   

5.
茄子渗透脱水及渗后干燥的研究   总被引:6,自引:3,他引:6  
本文对茄子进行了不同厚度下的高浓度糖盐溶液(60%重量比浓度)中浸泡试验,得出其失重率随时间变化的失重曲线;过30h改成热风干燥,得出其干燥曲线;并与未渗直接干燥的物料相比较,在相同安全贮藏水分活度αw=0。7下,节省干燥时间约一半;讨论了厚度对渗透脱水及渗后干燥的影响,渗液浓度对渗透脱水的影响以及水分活度对安全贮藏的影响。  相似文献   

6.
豇豆隧道式热风干燥特性和模型   总被引:6,自引:3,他引:3  
为了研究豇豆干燥特性以缩短干燥时间,该文利用隧道式热风干燥技术探讨了不同干燥风温(60、70和80℃)、风速(0.3、0.4和0.5 m/s)和料层厚度(6、18和30 mm)对豇豆干燥特性的影响。结果表明:豇豆的隧道式热风干燥前期主要是增速干燥阶段,后期主要是降速干燥阶段。提高干燥风温和风速,较少料层厚度均可缩短干燥时间。豇豆的水分有效扩散系数随着干燥风温和风速的升高而增大,随着料层厚度的增加而降低。通过阿伦尼乌斯公式计算出豇豆的干燥活化能为33.9 kJ/mol。使用决定系数R2、均方根误差RMSE和误差平方和SSE对7种常用干燥模型进行评价,结果表明:Page 模型的平均R2值最大、平均RMSE值和SSE值最小,分别为0.9988、0.01105和0.00286,是描述豇豆隧道式热风干燥的最优模型。研究结果可以为工程实践中预测豇豆隧道式干燥过程的水分变化提供参考。  相似文献   

7.
采用60Co γ射线对甘薯进行辐照预处理,考察辐照、热风温度和切片厚度对其干燥特性和表面温度的影响,同时对不同剂量辐照的甘薯样品进行了显微观察和水分活度测定。结果表明,甘薯的干燥速率和表面温度随着辐照剂量的升高而升高。当干基含水率为150%时,辐照剂量为0、2、5、8和10kGy的样品干燥速率分别为1.92、1.97、2.05、2.28和3.12%/min,表面温度分别为48.5℃、46.3℃、44.5℃、42.2℃和41.5℃;热风温度越高,切片越薄,辐照后甘薯失水速率越大。热风温度为85℃的样品比热风温度为65℃的样品干燥时间缩短170min,切片厚度为3mm的样品比切片厚度为7mm的样品干燥时间缩短了228min;辐照后的甘薯细胞壁变薄出现断裂,液泡破裂,水分活度也随辐照剂量的升高而增大。辐照剂量为0、2、5、8、10kGy的样品水分活度分别为0.92、0.945、0.958、0.969、0.979。辐照对甘薯热风干燥速率表面温度和水分活度等有显著影响,为进一步研究甘薯辐照与热风干燥结合加工工艺提供理论基础。  相似文献   

8.
张航  邓胜祥 《农业工程学报》2016,32(20):290-297
为了改善带式干燥机内流场结构,提高干燥机内水分均匀度,在计算流体力学(computational fluid dynamics,CFD)理论的基础上,利用FLUENT软件包模拟并探讨堆积厚度、热风流速、热风温度和热风含水率对干燥后物料含水率的影响,并辅以试验验证。在Shannon-wiener指数的基础上计算干燥机内含水率均匀度,并与传统水分均匀性(Mu)计算方法和CFD计算的平均值作比较。利用FLUENT软件包数值模拟并试验验证了2种导流板(普通导流板和翼型导流板)的干燥效果。结果表明:试验测得各测孔的风速与数值模拟的结果吻合。4类因素中堆积厚度对含水率均匀度影响最大,厚度为80 mm的槟榔层的含水率比厚度为40、60 mm的更均匀。含水率均匀度曲线的趋势相似,但含水率均匀度与CFD计算结果更接近。水分均匀性指数曲线显示堆积厚度为80 mm的试验水分均匀性远高于其他试验,当物料厚度为80 mm时,进口热风温度70℃,热风流速1.5 m/s,进口热风含水率0.24的试验条件更有利于水分均匀地分布。翼型导流板使得槟榔含水率从0.285降到0.215,水分均匀性指数提高至0.926,干燥效率提升。  相似文献   

9.
为了了解颗粒物料在穿流干燥过程中的干燥特性,利用自制的干燥试验台,在不同的干燥条件下以膨化饲料颗粒为例进行了穿流干燥试验。分析了通风方式(单向通风和换向通风)、热风温度(90和100℃)、床层厚度(5、7.5、10、15、20 cm)对其干燥动力学及干燥均匀性的影响。研究结果表明,床层厚度为15 cm,干燥至30 min时,换向通风的干燥不均匀度为10%,而单向通风的干燥不均匀度为23%,因此,换向通风比单向通风物料的水分均匀性提高,但不能提高干燥速率。当床层厚度为20cm,干燥将要结束时,100℃干燥的干燥不均匀度比90℃干燥要高6%,即温度越高,物料的干燥不均匀度越大。单向通风试验在床层厚度为10cm、热风温度为100℃时,会出现整体床层的"表观恒速干燥"现象;当床层厚度大于10cm时,会出现短暂的干燥速率增加现象。  相似文献   

10.
研究利用干态发酵方法制作风味番木瓜丁加工工艺,着重对影响产品质量的水分含量控制、热风干燥的温度与时间选择和影响风味口感的原料配比组合进行研究.结果表明:番木瓜丁在60℃下干燥3 h,水分含量在25%左右,按干番木瓜丁600 g,酱油300 g,蒜米60 g,姜丝30 g进行配比生产,产品形状、口感、色泽较好,且生产成本...  相似文献   

11.
为了降低空气源热泵干燥过程能耗,研究了空气源热泵干燥能耗特性,采用多元线性回归模型(multivariate linear regression model, MLRM)和BP神经网络(back propagation neural network, BPNN)模型来预测干燥工艺能耗。在分析干燥能耗影响特征参数的基础上,提出将干燥工艺过程进行切分处理的方法以降低数据获取难度。选取烘房设定温度、烘房设定湿度、烘房初始温度、烘房初始湿度、环境平均温度、环境平均湿度、物料质量和初始含水率8个特征参数作为模型输入,能耗和物料结束含水率作为模型输出。使用MLRM模型、BPNN模型和其他机器学习模型进行能耗预测,MLRM模型对能耗拟合的决定系数为0.739,对物料结束含水率拟合的决定系数为0.931;BPNN模型使用Sigmoid函数作为激活函数时对能耗拟合的决定系数最高,为0.828,使用Identity函数作为激活函数时对物料结束含水率拟合的决定系数最高,为0.942,拟合效果优于其他机器学习模型,能够满足实际生产需求。以复水豌豆为干燥对象设计加载物料65 kg、持续时间4 h的完整变温变湿干燥工艺进行验证试验,结果表明:试验总能耗为15.066 kW·h,MLRM模型和BPNN模型的预测总能耗分别为14.476 kW·h、15.183 kW·h,预测精度分别为96.08%、99.23%;试验结束含水率为8.541%,MLRM模型和BPNN模型的预测结束含水率分别为9.560%、8.889%,预测精度分别为88.07%、95.93%。该研究提出了一种使用MLRM模型和BPNN模型对空气源热泵干燥能耗进行分段精准预测的有效手段,对于优化干燥工艺和降低干燥能耗具有实际意义。  相似文献   

12.
高水分稻谷分程干燥工艺及效果   总被引:4,自引:3,他引:1  
针对中国南方地区稻谷收获季节需及时干燥高水分稻谷的市场需求较大和粮食干燥机的保有量较少、干燥机的使用效率受气候条件影响的技术现状,将收获的稻谷分为较高水分干燥过程和较低水分干燥过程。当稻谷含水率高于18%时,采用56~85℃的干燥介质,降水速率为0.90~2.94%/h;当稻谷含水率小于等于18%时,采用50~58℃的干燥介质,降水速率为0.49~0.93%/h。在2次干燥过程之间,采用通风仓暂存。现场试验表明,与恒温干燥工艺相比较,分程干燥工艺在保证稻谷烘后品质的条件下,可缩短干燥时间约12.8h,平均降水速率提高0.7%/h,一个收获期内可使干燥机处理量增加225%,提高干燥机的使用效率152%,且总干燥成本降低5%,有助于又好又快地进行高水分稻谷的干燥。  相似文献   

13.
水产品热泵干燥装置性能参数的理论分析   总被引:1,自引:1,他引:0  
为了降低水产品干燥加工能耗,该文以能源效率和除湿能耗比为指标,对热泵干燥装置性能参数的影响因素进行了分析。根据水产品干燥特性和亚热带地区气候特点,首先对开式热泵干燥系统和闭式热泵干燥系统的能源效率进行了比较;然后以闭式热泵干燥装置为例,对其除湿能耗比的影响因素进行了分析。结果表明,闭式热泵干燥装置的能源效率为2.52,而开式热泵干燥装置的能源效率为2.39,两者相差不大;蒸发温度和冷凝温度对热泵干燥系统的除湿能耗比均有明显的影响,其中蒸发温度的影响尤为显著;为了提高除湿能耗比,可提高蒸发温度和降低冷凝温度。  相似文献   

14.
海带自然晾晒与热泵烘干级联干燥自动控制系统研制   总被引:1,自引:1,他引:0  
干燥是海带加工过程中的工序之一,为进一步解决海带干燥过程中劳动强度大、能耗高等问题,该研究设计了自然晾晒与热泵烘干级联的干燥模式并研制了海带全程自动搬运、协调工作的码垛自动控制系统,其由晾晒棚、热泵房、码垛装置、桥接装置与控制室组成。采用USS协议与G120变频器通讯,采集信号通过485通讯口送到可编程逻辑控制器PLC的寄存器,PLC对行走电机进行加减速判断;同时利用Profibus协议实现PLC与Sick条码定位传感器通讯,实现晾晒杆准确定位;然后编程控制气动抓手,自动实现海带晾晒杆的抓放等动作;利用限位开关作为数据传递的触发信号,晾晒棚与热泵房导轨自动对接,实现了海带自然晾晒与热泵烘干结合。试验结果表明,该控制系统总运行时间为5.7 h,晾晒杆定位误差±1 cm,高速运行时间20 m/min,晴天自然晾晒可减少海带含水率至60%,烘干后海带含水率为15.2%左右,泥沙、杂质率为0%,为一级品。系统运行稳定,节约人工,保证海带干燥的品质。该研究有助于为藻类加工产业提供高品质、低能耗、绿色环保新模式与样板。  相似文献   

15.
基于监测物料温度的胡萝卜热风干燥相对湿度控制方式   总被引:4,自引:3,他引:1  
针对热风干燥中,表面易结壳农产品物料阶段降湿干燥中各阶段高湿和低湿保持时间较难确定的问题,该文提出了在干燥介质温度和风速一定时,基于监测物料温度的热风干燥相对湿度控制方式。该控制方式在前期预热阶段保持较高恒定的相对湿度值,使物料迅速升温;中期干燥阶段物料温度保持特定值进行排湿干燥,物料温度有上升趋势时停止排湿使之升温;后期降速干燥阶段,物料保持较高温度值进行排湿干燥。胡萝卜的热风干燥验证试验研究结果表明,预热阶段,相对湿度控制最大偏差为1.0%;中期干燥阶段,物料排湿干燥物料温度保持值逐渐升高,物料温度上升至保持温度的最大误差为0.8℃;在后期干燥阶段,检测湿含量之差小于0.5 g/kg,判定干燥结束相对于称量判定干燥结束终点时间延迟为9 min。该干燥时间相比于前期相对湿度50%后期连续排湿和前期相对湿度50%后期相对湿度20%缩短了19.7%。该文提出了一种基于监测物料温度的热风干燥相对湿度调控策略,控制精度高,延迟时间短,相比于前期高湿后期低湿的干燥工艺能显著缩短干燥时间,提高干燥效率。  相似文献   

16.
切片土豆间歇干燥过程传热传质模拟研究   总被引:3,自引:1,他引:2  
在土豆干燥中,常采用间歇干燥工艺以缩短净干燥时间、降低有效能耗和提高干后品质。干燥过程中土豆的物理化学性质和营养成分变化都与温度、水分和时间有关。如果能够准确地预测间歇干燥过程中土豆内部的水分分布、温度、水分变化,就能为合理选择间歇干燥较佳工艺提供依据。该文提出了间歇干燥缓苏过程模型,可随时定量求得缓苏段土豆片内部水分重新分布情况以及土豆片内部水分分布时所需缓苏时间,为制定间歇干燥工艺提供依据。  相似文献   

17.
苜蓿气体射流冲击联合常温通风干燥装备设计及试验   总被引:2,自引:2,他引:0  
针对苜蓿干燥存在的处理量小、耗能高、叶片损失率高的问题,该文将紫花苜蓿的干燥过程分为高温和常温两个干燥段,设计了气体射流冲击联合常温通风干燥装备,包括基于狭缝型气体射流冲击管的气体射流冲带式干燥机和基于环境条件自动控制的常温通风箱式干燥机。利用计算流体动力学软件Fluent对狭缝型气流冲击管内部的流场进行数值模拟。结果显示增设扰流板可以改善狭缝型气体射流冲击管喷嘴出口气流速度分布的均匀性,速度变异系数由不设扰流板情况下的51.1%降为7.7%;利用单片机控制系统进行信息采集并控制通风的进行,解决夜间物料吸湿回潮、发热的问题。以紫花苜蓿作为原料对干燥装备的性能进行试验验证,结果表明:气体射流冲击联合常温通风干燥的苜蓿具有批次处理量大(150 kg/h)、叶片损失率小(干草的叶片损失率为1.5%)、能耗低(单位去水能耗3 408 k J/kg)的优点。研究结果为低能耗、低叶片损失率的苜蓿干燥技术与装备提供参考。  相似文献   

18.
热风干燥联合真空降温缓苏提升黄秋葵干制品品质   总被引:4,自引:3,他引:1  
为提升黄秋葵热风干燥产品品质,试验将真空降温缓苏技术应用于黄秋葵热风干燥过程中。研究了不同缓苏时长下黄秋葵干燥特性和品质指标的变化规律;利用Weibull分布函数分析缓苏处理对黄秋葵热风干燥过程中水分扩散机制的影响;采用一元非线性回归分析构建适用于黄秋葵真空降温缓苏-热风联合干燥过程中干燥特性和品质指标随缓苏时长变化的学数模型;以总干燥耗时、总干燥能耗、复水比、色相角以及总营养物质保存率为指标,对不同缓苏时长下的黄秋葵热风干燥进行加权综合评价。结果表明:缓苏处理能够提升黄秋葵热风干燥速率,且随着缓苏时长的延长其促进作用会增强;Weibull分布函数能够准确描述(R2>0.99且离差平方和χ2处于10-4数量级)黄秋葵真空降温缓苏-热风联合干燥过程中水分比随干燥时间的变化规律;常用函数一元非线性回归分析能够构建出黄秋葵真空降温缓苏-热风联合干燥过程中各干燥特性和品质指标随缓苏时长的变化规律的动力学模型;联合干燥过程中,缓苏60 min处理的综合评分值最高为0.55,在干燥温度和风速分别为60℃、1.5 m/s条件下,该缓苏时长较适合应用于黄秋葵热风干燥。研究表明,真空降温缓苏处理能够提升黄秋葵热风干燥的干燥速率和干燥品质,该文可为真空降温缓苏技术在高品质黄秋葵干制品工业生产上的应用提供理论依据。  相似文献   

19.
成膜预处理提高扇贝柱超声波辅助热泵干燥效率及品质   总被引:1,自引:1,他引:0  
热泵干燥(Heat Pump Drying,HPD)因条件温和、能效高,特别适用于水产品的干燥。但是,由于HPD温度低,导致干燥时间长、干制品品质劣变严重,限制了HPD在水产品中的应用。为了强化扇贝柱HPD效率,提高干制品品质,该研究首先采用超声波(Ultrasonic,US)预处理扇贝柱,然后再分别采用3种可食性膜(海藻酸钠(Sodium Alginate,SA),低甲氧基果胶(Low-Methoxy Pectin,LMP)和印度树胶(Gum Ghatti,GG))预处理,US处理后未经过成膜预处理的扇贝柱作为对照组(Control Group,CK),探究成膜预处理对扇贝柱US辅助HPD动力学及品质特性的影响。基于低场核磁共振(Low-Field Nuclear Magnetic Resonance,LF-NMR)技术,采用单变量线性(Univariate Linear,UL)模型和偏最小二乘回归(Partial Least Squares Regression,PLSR)模型量化扇贝柱LF-NMR弛豫参数与干制品含水率(Moisture Content,MC)和水分活度(Water Activity)的关系,以期监测扇贝柱HPD进程。研究结果表明:相比于CK,成膜预处理导致扇贝柱有效水分扩散系数(Effective Moisture Diffusivity)提高了1.32%~8.41%。SA和GG成膜预处理可以减缓扇贝柱干燥过程中不易流动水向结合水迁移的速率,同时增加了干燥过程中自由水的流动性,进而强化了干燥效率。相比于CK,SA和GG成膜预处理增加了扇贝柱硬度、弹性、内聚性和咀嚼性,降低了复水比、收缩率和总色差值;而LMP成膜预处理降低了硬度和总色差值。综合考虑,US-SA为扇贝柱US辅助HPD较适合的预处理方式。LF-NMR横向弛豫时间与大部分干制品品质之间具有显著(P<0.05)关联性。扇贝柱LF-NMR图谱中,当横向弛豫时间主峰<10 ms时,而且仅出现1个主峰,即可作为扇贝柱干燥终点。UL模型表明,MC和水分活度与不易流动水峰面积和总峰面积呈显著(P<0.05)正相关,与结合水峰面积呈显著(P<0.05)负相关。PLSR模型表明,以4个LF-NMR参数为变量的回归模型可高精度地预测MC和水分活度。该研究为扇贝柱热泵干燥增效、保质提供一种新型非热力预处理方式;同时,基于LF-NMR技术,为快速、无损监测扇贝柱热泵干燥进程提供理论依据和实践参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号