首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 152 毫秒
1.
干燥介质相对湿度对胡萝卜片热风干燥特性的影响   总被引:2,自引:17,他引:2  
为了探究相对湿度和阶段降湿对热风干燥过程的影响,该文在干燥温度60℃、风速3.0 m/s条件下,研究了相对湿度(20%、30%、40%、50%)及第一阶段相对湿度50%保持不同时间(10、30、60、90 min),第二阶段相对湿度20%下,胡萝卜片的干燥特性和温度变化规律;利用Weibull分布函数对干燥曲线进行拟合并分析干燥过程,结合尺度参数估算水分有效扩散系数;基于复水比、色泽、干燥时间和能耗对不同相对湿度条件下的干燥过程进行评价。研究结果表明:相对湿度保持恒定条件下,干燥速率先上升后下降,且相对湿度越低干燥速率越大。降低相对湿度有利于缩短干燥时间,热风相对湿度20%比50%条件下干燥时间缩短了27.6%;分段降湿干燥条件下,热风相对湿度50%保持30min后降低为20%,其干燥时间比相对湿度恒定为20%条件下缩短了18.5%,干燥过程出现2个升速阶段;Weibull分布函数可以很好地描述胡萝卜恒定湿度和阶段降湿干燥过程。尺度参数α范围在1.864~3.635 h之间,形状参数β值在1.296~1.713之间,水分有效扩散系数在1.17×10-9~2.92×10-9 m2/s之间。对绿红值、复水率、能耗和干燥时间进行综合评价显示,热风相对湿度50%保持30 min干燥条件下绿红值最高为41.4,能耗相比于恒定相对湿度20%条件下减少了6.0%,复水比较高为3.81,综合评分较高为0.91。该文揭示了干燥介质相对湿度对胡萝卜片干燥特性的影响规律,对于优化干燥介质湿度控制策略以提高干燥速率和品质,降低干燥能耗提供了科学依据和技术支持。  相似文献   

2.
相对湿度对胡萝卜热风干燥过程中热质传递特性的影响   总被引:7,自引:6,他引:1  
为了揭示胡萝卜热风干燥过程中阶段降湿的促干机制,该研究在干燥温度60℃、风速3.0 m/s条件下,研究了相对湿度(20%、30%、40%、50%)及第一阶段相对湿度50%保持不同时间(10、30、60、90 min),然后第二阶段相对湿度恒定为20%至干燥结束,干燥过程中对流传热系数、对流传质系数和物料表面微观孔隙结构的变化规律。研究结果表明:20%、30%、40%和50%相对湿度下,干燥初始时刻对流传热系数分别为42.9、64.7、135.1和178.9W/(m2·℃),提高相对湿度能够显著提高预热阶段的对流传热系数(P0.05),相对湿度越高,物料升温速率越快。物料吸收总热量、水分蒸发消耗热量占比均随着相对湿度的升高而逐渐降低;物料升温消耗热量占比随着相对湿度的升高而逐渐增大。相对湿度为20%时,对流传质系数为1.01×10-6~2.54×10-6m/s;相对湿度为50%时,对流传质系数为0.26×10-6~1.12×10-6 m/s;降低相对湿度,能够显著的提高对流传质系数。相对湿度50%保持30min后降为20%干燥条件下,当干燥时间大于1.5 h后,对流传质系数大于相对湿度50%分别保持10、60和90 min干燥条件下的对流传质系数,此条件下干燥时间也最短。相对湿度50%干燥条件下有利于保持胡萝卜表面的多孔结构,而相对湿度20%干燥条件下,胡萝卜表面因干燥速率过快而导致水分迁移孔道发生收缩堵塞的现象。阶段降湿提高胡萝卜干燥效率的机制在于:干燥升速阶段,高相对湿度提高了对流传热系数,使得物料迅速升至较高温度;且利于维持物料表面多孔结构,有助于内部水分的扩散迁移;干燥恒速和降速阶段,低相对湿度提高了对流传质系数。研究结果可为求解干燥过程中的对流传热系数和对流传质系数提供理论依据,揭示阶段降湿的促干机理,并为阶段降湿干燥方式在农产品的干燥加工应用提供技术支持。  相似文献   

3.
相对湿度作为干燥介质的重要参数,对干燥热质传质过程和干燥品质具有显著影响。但由于相对湿度对干燥过程的影响机理及优化调控机制尚不明确,导致相对湿度的调控方式多依靠经验,造成干燥效率低、品质差、能耗高等问题。对于传质过程,降低相对湿度能够增大对流传质系数,加快物料表面水分蒸发;而对于传热过程,升高相对湿度能够增大对流传热系数,加快物料升温速率。相对湿度较高时,物料升温速率快,内部水分迁移量增大,但表面水分蒸发量较小;而当相对湿度较低时,物料升温速率较慢,内部水分迁移量较小,但表面水分蒸发量较大。相对传热和传质过程的影响此消彼长,互相耦合。高相对湿度主要体现为对传热过程的影响,低相对湿度主要体现为对传质过程的影响。高相对湿度能够抑制物料表面的结壳,并能够提高复水性,降低收缩率。阶段降湿及多阶段降湿干燥方式下物料表面形成和保持了蜂窝状多孔结构,能够提高干燥效率和品质。基于监测物料温度的相对湿度调控方式被验证为较忧的相对湿度控制方式。阶段降湿干燥方式适用性的实质为:干燥过程中所体现出的对流传热热阻和内部导热热阻的相对大小,及对流传质阻力和内部传质阻力的相对大小,不同干燥条件和物料种类、厚度会影响以上传热传质阻力的大小,从而呈现出不同适应性的结果。当阶段降湿干燥过程中传热毕渥数>1且传热毕渥数>0.1时,说明阶段降湿干燥过程适用于此物料的干燥。该文综合论述了相对湿度对果蔬热风干燥过程中热质传递及干燥品质的影响,优化调控策略及适用性范围4个方面内容,明确了果蔬热风干燥过程中相对湿度的影响机理,为相对湿度的优化调控提供理论依据和技术支持。  相似文献   

4.
为将碳纤维红外板的辐射加热技术应用于农产品物料的干燥中,探究其辐射加热特性和干燥特点。在介绍其制作工艺的基础上,以碳纤维红外板作为辐射热源搭建干燥试验台,对胡萝卜块、苹果块、香蕉块、木耳等4种常见果蔬物料进行干燥。通过实时采集、检测干燥过程中物料内部温度、干燥室温度、相对湿度变化情况了解干燥进程;并对红外干燥过程中物料升温情况、物料厚度、辐射间距、干燥方式进行探讨。结果表明:1)碳纤维红外板可作为红外干燥热源,辐射功率1.1 k W/m2时,能发射1~30μm的中、长波红外线,且主要集中在5~15μm,红外板表面温度范围为84~92℃。辐射间距8 mm条件下,4种物料从水分比1干燥到水分比0.1时,耗时为270~300 min,且20 mm×20 mm×11 mm的胡萝卜片内部温度升高到60℃仅需20 min。2)胡萝卜片长宽20 mm×20 mm,厚度5~11 mm范围内,在干燥中期近似恒温段,物料中心温度随厚度的增加而增加。3)辐射间距为4~12 mm范围内,辐射间距越大,干燥时间越长。4)与普通热风干燥相比,红外—热风联合干燥可有效缩短40%干燥时间,能耗约为普通热风干燥的49.39%;干燥前期排湿、干燥过程较小的风速均有助于红外干燥的进行。综上所述,碳纤维红外板可作为干燥热源。研究结果可为碳纤维在干燥领域的实际应用提供理论依据。  相似文献   

5.
圣女果分段式变温变湿热风干燥特性   总被引:14,自引:12,他引:2  
为提高圣女果制干品质、缩短干燥时间,和降低能耗,该文采用分段式内循环热风干燥技术,利用4种干燥工艺,对圣女果在不同温湿度以及切分方式下的干燥特性进行研究。试验结果表明:圣女果在干燥过程中存在着预热阶段和降速阶段。采用分段式内循环热风干燥圣女果在干燥室内的温度分别为50、60、65和70℃,对应的相对湿度分别为70%、50%、30%和10%,时间分别为0.5、2.5、2 h和直至结束时,沿轴向切分,干燥后圣女果的感官评分为8.5分,圣女果达到终了含水率的时间为10 h,此时干燥速率最快,达到了较理想的试验结果。在同等干燥条件下,干燥速率快慢依次为轴向切分斜切径向切分。该研究为热风干燥技术应用于圣女果的干燥理论提供了技术依据。  相似文献   

6.
红外联合热风干燥白萝卜片的耦合建模与热质传递分析   总被引:1,自引:1,他引:0  
为寻求红外联合热风干燥过程中物料内部热量传递的物理解释,克服水分输运现象不能直观获取的问题,该研究建立白萝卜片红外联合热风干燥过程中水分和温度分布的数值模型。考虑到干燥过程中物料扩散系数动态变化,对实现精准模拟产生干扰,该研究对比考虑温度、收缩相关扩散系数两种方式下单独热风干燥及红外联合热风干燥过程中的热质传递情况并进行试验验证。考虑到二维轴对称几何结构,采用COMSOL Multiphysics 5.2a对该系统的传热传质模型进行求解。结果表明:基于收缩相关有效扩散系数能够准确描述白萝卜片在单独热风及联合干燥过程中的热质传递情况, 单独热风和红外联合热风干燥模拟值与试验值的决定系数(R2)分别为0.893和0.911。红外辐射是影响传热传质速率的主导因素。具体表现为恒定干燥温度60 ℃条件下,红外联合热风干燥比单独热风干燥物料至安全含水率(10%)有效缩短21.4%时间(90 min),红外联合热风干燥样品比单独热风干燥物料达到设定温度值(60 ℃)缩短36.0%时间。进一步研究表明有效水分扩散系数随红外辐射温度的升高而升高,传热、传质系数对物料升温及水分脱除影响显著。该模型为其他物料在联合干燥技术的模拟研究提供有益借鉴。  相似文献   

7.
基于毕渥数的果蔬阶段降湿热风干燥特性   总被引:2,自引:2,他引:0  
为了揭示阶段降湿热风干燥技术的适用性,该研究在干燥温度60℃、风速1.0 m/s 时,研究了不同厚度胡萝卜片(6、12、18 mm)和龙眼物料在阶段降湿(第1阶段相对湿度(Relative Humidity,RH)50%保持30 min;第2阶段RH 20%至结束)和连续排湿(RH<15%)干燥条件下的干燥特性,传热毕渥数(heat transfer Biot,Bih)和传质毕渥数(mass transfer Biot,Bim)、水分有效扩散系数(effective moisture diffusion coefficient, Deff)、色泽、复水比及能耗值。研究表明:对于厚度为6 mm的胡萝卜片和龙眼物料,相对于阶段降湿,连续排湿有助于提高干燥效率;对于12或18 mm的胡萝卜片,阶段降湿能够提高Deff。6、12和18 mm的胡萝卜片在干燥过程中的Bih分别为0.582 7、1.165 5和1.748 2。6 mm时Bih<1,内部扩散的水分能够及时迁移至表面,维持较低RH有助于加快干燥速率。12或18 mm时Bih>1,物料表面和内部存在着较大的水分和温度梯度,此时需要采用阶段降湿干燥方式。不同厚度胡萝卜片干燥过程中的Bim在0.156 8~0.223 0之间;连续排湿和阶段降湿干燥条件下,龙眼Bim分别为0.110 3和0.084 3。这表明,水分由果肉内部迁移至果肉表面的传质阻力较小,干燥过程中果肉收缩、坚硬的外壳及外界较高RH使得水分迁移产生较大阻力。不同厚度胡萝卜片Bim>0.1,表明物料内部至表面存在较大的水分梯度,应采用高RH以减小表面水分蒸发速率,同时升高物料温度。对于6 mm胡萝卜和龙眼物料,连续排湿干燥条件下色泽较好,复水比高且能耗低;而对于12 或18 mm的胡萝卜片,阶段降湿干燥条件下具有较好的色泽,较高的复水比及较低的能耗。综上,阶段降湿干燥过程中,Bih>1且Bim>0.1时,说明阶段降湿干燥适用于此物料的干燥,否则宜采用连续排湿干燥方式。该研究可为果蔬热风干燥过程中合适的RH调控方式筛选提供理论依据和技术支持。  相似文献   

8.
基于三维湿热传递的玉米籽粒干燥应力裂纹预测   总被引:3,自引:3,他引:0  
为了揭示热风干燥过程玉米籽粒的应力裂纹形成机理,该文利用图像处理技术构建玉米籽粒的三维几何模型,将湿热传递数学模型与应力模型耦合获得应力信息,并与其屈服应力比较以预测玉米籽粒开裂特性。结果表明:该模型模拟的含水率和温度与试验值的最大误差分别为7.28%和9.64%,可以用于模拟玉米籽粒温度梯度、水分梯度和应力分布变化。干燥过程玉米籽粒的温度、水分梯度和应力表层较大而内部较小,干燥过程玉米籽粒主要受湿应力作用。干燥过程(热风温度40~80℃、相对湿度12%~52%)玉米籽粒的最大应力逐渐减小,其随着热风温度的升高而增大、随着相对湿度的升高而减小。玉米籽粒的最大应力在干燥前期大于其屈服应力而发生开裂,较低的温度和较高的相对湿度可以抑制玉米籽粒在干燥前期形成裂纹。研究结果为预测干燥过程玉米籽粒应力裂纹提供参考。  相似文献   

9.
热风干燥过程相对湿度对香菇品质的影响   总被引:4,自引:4,他引:0  
为了研究干燥介质相对湿度对香菇品质的影响,该研究将计算机视觉在线检测技术应用于基于温湿度过程控制的热风干燥技术中,利用4种不同的相对湿度控制方法对去柄香菇进行干燥:连续排湿、全程设定恒定相对湿度(40%,30%,20%)、阶段降低相对湿度以及后期迅速降低相对湿度(30%优化,阶段降湿优化)。利用图像信息实时获取香菇外观品质,探究了香菇干燥过程中收缩率、圆度、表面褶皱率(Ratio of Wrinkled Surface Area,RWSA)与纹理特征(对比度、能量)的变化,并利用扫描电镜图像上香菇细胞的长宽比表示干香菇的微观结构,采用气相色谱-离子迁移谱联用(Gas Chromatography-ion Mobolity Spectrometry,GC-IMS)技术获取干香菇的风味成分。研究结果表明,相对湿度对香菇细胞的收缩率、圆度、纹理特征以及结构与复水比均有显著性影响(P < 0.05),全程40%与全程20%组分别由于其相对湿度过高与维持时间过长,导致干燥时间延长,香菇表面硬化程度降低,收缩率增加,圆度降低,表面褶皱增多且更细密,表面颜色对比度降低,香菇表面褶皱率达到最大值的时间与香菇复水比呈正相关关系(r2 = 0.88),香菇表面褶皱率达到最大值的时间越晚,香菇复水比越高,通过香菇褶皱率变化可预测香菇复水比。而优化组(30%优化、阶段降湿优化)可缩短干燥时间,加速香菇表面硬化,保持香菇外观品质,虽然其干制品复水比,微观结构与风味成分均不如连续排湿组,但其咀嚼度(P < 0.05)与弹性更高。综合考虑干燥时间与干香菇的品质,优先采用连续排湿,其次采用30%优化的方式干燥香菇。  相似文献   

10.
为揭示相对湿度对胡萝卜热风干燥过程中内部水分迁移和表面水分蒸发的影响,以及物料表面结壳的成因,该研究在干燥温度60℃、风速3.0 m/s时,研究了恒定相对湿度(relative humidity,RH)(20%、30%、40%和50%)、第一阶RH 50%保持不同时间(10、30、60和90 min)而后降为20%,以及基于物料温度自动控制相对湿度干燥条件下的内部水分迁移量(D)、表面水分蒸发量(E)、表面水分累积量(Q)、物料微观结构和复水率。结果表明,恒定RH干燥条件下,D随干燥时间逐渐增大而后趋于稳定,E随干燥时间逐渐增大而后降低。RH越高,物料升温速率越快,D越大;RH越低,E越大。RH为20%、30%和40%时,Q=0的时间分别为1.11、1.36和1.70h,并在此时刻之后物料表面出现明显结壳现象,且RH越大,出现结壳时机越晚;RH为50%时未出现Q<0,可能未出现明显的结壳现象。Q>0时,干燥速率与Q值变化趋势一致;Q<0时,对应干燥速率减小。RH为50%保持30 min后降为20%时,Q=0的时间为1.39 h,相对于RH 20%的干燥条件能够提高物料...  相似文献   

11.
玉米果穗在自然通风过程中水分迁移的动力学分析   总被引:4,自引:3,他引:1  
为了探索玉米果穗水分迁移规律,针对低温自然通风降水过程中玉米果穗的绝对水势、扩散系数及活化能的变化规律及影响因素进行了分析。结果表明:在低温条件下,玉米果穗通过仓储自然通风干燥至安全水分需要3到4个月的时间;随着环境温度的上升,空气与玉米的绝对水势均逐渐增大,玉米的绝对水势大于空气绝对水势,玉米水分下降,当两者间的绝对水势差值逐渐缩小时,仓内粮食的水分子没有足够能量从表面扩散到周围的空气中,玉米水分逐渐趋于平衡;各仓水势梯度明显,水分从西向东迁移,仓内迎风面水势值小,水分下降快,粮堆厚度对绝对水势有影响;玉米果穗的水分扩散系数范围为2.563×10-12~5.34×10-12 m2/s,粮食与空气的绝对水势差及粮堆厚度对水分扩散系数均有影响;Arrhenius方程可以描述玉米果穗水分扩散系数与温度的关系,玉米果穗水分扩散的平均活化能为35.76 k J/mol。研究结果将为粮食储藏与干燥过程的动力学研究提供理论依据。  相似文献   

12.
热风干燥联合真空降温缓苏提升黄秋葵干制品品质   总被引:4,自引:3,他引:1  
为提升黄秋葵热风干燥产品品质,试验将真空降温缓苏技术应用于黄秋葵热风干燥过程中。研究了不同缓苏时长下黄秋葵干燥特性和品质指标的变化规律;利用Weibull分布函数分析缓苏处理对黄秋葵热风干燥过程中水分扩散机制的影响;采用一元非线性回归分析构建适用于黄秋葵真空降温缓苏-热风联合干燥过程中干燥特性和品质指标随缓苏时长变化的学数模型;以总干燥耗时、总干燥能耗、复水比、色相角以及总营养物质保存率为指标,对不同缓苏时长下的黄秋葵热风干燥进行加权综合评价。结果表明:缓苏处理能够提升黄秋葵热风干燥速率,且随着缓苏时长的延长其促进作用会增强;Weibull分布函数能够准确描述(R2>0.99且离差平方和χ2处于10-4数量级)黄秋葵真空降温缓苏-热风联合干燥过程中水分比随干燥时间的变化规律;常用函数一元非线性回归分析能够构建出黄秋葵真空降温缓苏-热风联合干燥过程中各干燥特性和品质指标随缓苏时长的变化规律的动力学模型;联合干燥过程中,缓苏60 min处理的综合评分值最高为0.55,在干燥温度和风速分别为60℃、1.5 m/s条件下,该缓苏时长较适合应用于黄秋葵热风干燥。研究表明,真空降温缓苏处理能够提升黄秋葵热风干燥的干燥速率和干燥品质,该文可为真空降温缓苏技术在高品质黄秋葵干制品工业生产上的应用提供理论依据。  相似文献   

13.
油菜籽流化床恒速干燥传热传质特性及模型研究   总被引:1,自引:1,他引:0  
在油菜籽干燥过程中,干燥工艺(热空气温度、速度和油菜籽初始含水率)主要影响着恒速干燥阶段的传热、传质系数,为此该文基于恒速干燥阶段,借助流化床干燥试验装置,试验分析了油菜籽初始含水率、热空气温度、热空气流速对油菜籽流化床干燥对流传热、传质系数的影响,结果表明:各影响因素的敏感性主次顺序为油菜籽初始含水率热空气温度热空气流速,其中油菜籽初始含水率为29.72%的对流传热、传质系数约为含水率14.41%的1.9倍,2.25 m/s热空气流速的对流传热、传质系数约为1.75 m/s的1.2倍,65℃热空气温度的对流传热、传质系数分别约为45℃的1.2倍和1.4倍。为此,以对流传热、传质系数为性能指标,根据Box-Behnken试验设计原理,应用Design-Expert 8.0.6软件,建立了影响因子与性能指标的回归模型,通过验证发现对流传热、传质系数两个模型预测值与试验值的最大相对误差仅为4.83%和4.79%,表明该两个回归模型拟合度较好,可靠性较高。研究结果可为强化传热传质提高油菜籽流化床干燥效率提供理论依据,同时也为生产工艺条件选择和干燥设备设计提供理论支撑。  相似文献   

14.
研究了不同风温和风速下,排气余热直接回收对干燥过程及能耗的影响;建立了排气余热直接回收利用的理论分析模型,探讨了环境条件对排气余热直接回收利用的影响。  相似文献   

15.
多单元带式干燥机干燥过程的计算机模拟研究,有利于优化其干燥工艺参数,提高干燥效率,减少能耗,保证物料的干燥品质。该文利用面向对象的高级程序语言Visual C++建立了玉米多单元带式干燥的深床干燥数学模拟程序,并编制人机交互界面,预测干燥设备内的物料和干燥介质状态参数。同时用Matlab软件对数据进行处理,分析了热风温度、相对湿度以及风速等干燥工艺参数对干燥过程的影响,结果表明热风温度对干燥速率影响最大,其次是风速,热风相对湿度影响最小。为验证模型的准确性,选用5HCCX-1.6型多单元带式干燥设备进行试验研究,结果表明该模拟程序能较好的预测该类干燥设备的干燥过程,并对实际生产有一定的指导作用。  相似文献   

16.
热风干制温度对枣果微观组织结构的影响   总被引:3,自引:2,他引:1  
为了研究热风干制温度对枣果微观组织结构的影响,该试验选用不同温度(35、40、45、50、55℃)热风干制枣果,利用石蜡切片、显微成像技术获得了热风干制过程中不同含水率条件下果肉细胞、空腔等结构参数的分布曲线,借助分布曲线的偏度、峰度(以鲜枣为参照)描述了微观结构参数在热风干制过程中的变化趋势,并建立了微观结构参数(果肉细胞、空腔横截面的面积比、周长比及当量直径比)与宏观干燥参数(水分比)的拟合方程。结果表明,利用微观结构参数分布曲线的偏度、峰度可较好地描述不同温度干制过程中细胞、空腔整体的变化趋势;干制过程中随着含水率的降低,果肉细胞、空腔结构参数的变化趋势均不具有一致性或连续性;不同温度相比之下,低温、高温干制过程对果肉细胞形态的改变均有较大影响,且高温(55℃)条件影响更大;不同温度热风干制过程中,由果肉细胞结构改变所引起的空腔塌缩和扩增同时存在,高温(55℃)条件对空腔的扩增、塌缩影响较大。果肉细胞,空腔结构参数比与水分比之间关系可用非线性模型描述(R2≥0.7283,Std≤25.1682%),模型可预测在不同温度热风干制过程中细胞、空腔随含水率的变化情况,研究结果可为热风干制新工艺的开发提供参考。  相似文献   

17.
Abstract

In grassland areas where herbage production has no economic value, the cut grass is often left on the sward surface where its decomposition is influenced by weather conditions. Although the influence of temperature and humidity on decomposition has been investigated under controlled lab conditions, experimentation has generally been under ideal moisture conditions that have not tested the combinations of climatic limitations that might occur in the field. The decomposition of mown turfgrass clippings deposited at different times of vegetation period was studied in situ using nylon bags during the first 8 weeks after deposition to investigate the effect of weather conditions (the air temperature, relative humidity, precipitation) on decomposition. Decomposition is the highest in the case of high air humidity and temperature of 10°C. Limiting factors for decomposition at temperatures above 10°C is the air humidity and below 10°C the air temperature. The general tendency was that the rate of decomposition increased with increasing air temperature up to 10°C, but with further increases of air temperature the decomposition rate slowed down. Relative air humidity had a variable impact (at the beginning of the decomposition process (weeks 1–2) the influence was negative, during weeks 3–8 of the decomposition process the effect was positive), and hence had no generalized relationship with decomposition over the studied decomposition period (weeks 1–8). The most significant influence of weather conditions on the decomposition rate was recorded directly after cutting. If the cutting was done during hot weather conditions, the material was drying fast and therefore decomposed slowly. Our results indicate that for fast decomposition of clippings it is important to maintain the freshness of material. Lower decomposition rates occurred during conditions of hot and dry weather, and also cooler (temperature near to 0°C) weather, and can be compensated as soon as favourable weather arrives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号