首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 466 毫秒
1.
运用响应面法优化芦苇基生物炭活化工艺   总被引:1,自引:1,他引:0  
为优化芦苇基生物炭制备工艺,在单因素试验考察热解温度、氨水质量分数和浸渍比(生物质原料与氨水质量之比)等3种参数对芦苇基生物炭吸附性能影响的基础上,利用Box-Benhnken中心组合设计实验,运用响应面法对其活化工艺参数进行优化。结果表明,3个因素均对生物质炭的比表面积产生影响,其影响显著性大小为热解温度氨水质量分数浸渍比。通过模型优化确定了最佳活化工艺参数为热解温度620℃、氨水质量分数8%、浸渍比1∶5;该工艺条件下制备的生物炭比表面积和碘吸附值分别为334.49 m~2/g、585.52 mg/g,均优于未进行优化改性的样品。该值与理论值(335.2 m~2/g、582.288 mg/g)基本相符,表明响应面模型与实际情况拟合良好,验证了模型的有效可行性。  相似文献   

2.
以餐厨垃圾为原材料,通过高温热解法和共沉淀法制备了餐厨垃圾生物质炭(Natural kitchen waste biochar,NKB)和磁性餐厨垃圾生物质炭(Magnetic kitchen waste biochar,MKB),研究了热解温度、热解时间、吸附剂量、吸附时间和溶液pH值等条件对生物质炭吸附水中亚甲基蓝(MB)性能的影响。结果发现,在热解温度450℃、热解时间1 h条件下制备的NKB对MB吸附性能最好;在生物质炭投加量1.0 g·L-1、吸附时间20 min、pH值为9的条件下,MKB对MB的去除率和吸附量分别为97.94%和9.2 mg·g-1,分别比NKB提高18.54个百分点和1.6 mg·g-1;经过多次再生后,MKB对MB的吸附去除率仍在90%以上;吸附过程符合Langmuir等温吸附模型。研究表明,餐厨垃圾生物质炭经过赋磁可提高对亚甲基蓝的吸附性能,碱性条件下吸附性能较好,且能多次循环再生。  相似文献   

3.
废报纸生物质炭的制备及对铜离子的吸附性能   总被引:1,自引:1,他引:0       下载免费PDF全文
  目的  以废报纸为原料,通过氮气(N2)保护在不同热解温度下制备生物质炭,并探讨废报纸基生物质炭对铜离子(Cu2+)的吸附性能和吸附机制。  方法  采用元素分析、比表面积分析仪(BET)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电镜(SEM)、X射线衍射仪(XRD)和原子吸收光谱仪(AAS)等对生物质炭进行表征。  结果  所制备的生物质炭具有多孔结构,比表面积高(211 m2·g-1),有利于从水中去除Cu2+。生物质炭的物理和化学性质随着热解温度的变化而变化。随着热解温度的升高,生物质炭的芳香性、比表面积、pH和灰分含量逐渐增加,而氢、氮和氧含量下降。同时进行批量吸附试验,分析溶液初始pH、吸附时间、初始浓度、不同吸附温度对生物质炭吸附容量的影响。热解温度为400、500、600℃的生物质炭在30℃、pH为5.0的条件下最大吸附容量分别为107、115和138 mg·g-1。伪二级动力学模型和Langmuir等温吸附模型能很好地模拟吸附过程,表明在此吸附过程中,化学吸附是限速步骤,吸附发生在吸附剂内特定的均相位点(单层吸附)。通过热力学模型计算所得ΔHo为正值,表明吸附过程是吸热反应。此外,生物质炭的吸附机制包括沉淀作用、离子交换、π-π作用和络合反应。  结论  本研究以废报纸为原料,所制备的生物质炭是具有一定应用前景的、环境友好的、高效的Cu2+吸附材料。  相似文献   

4.
洗脱处理对生物质炭吸附铜离子行为的影响   总被引:1,自引:0,他引:1  
常用生物质炭制备方法会产生焦油、醋液和无机盐等热解副产物,这些物质附着在生物质炭表面,会影响对其性质和应用的研究。以四种溶剂(水、稀酸溶液、稀碱溶液、无水乙醇)作为洗脱剂,对生物质炭进行浸泡处理,比较洗脱前后的性质;用洗脱后的生物质炭吸附铜离子,探讨不同洗脱处理是否会对生物质炭吸附重金属离子的能力产生影响;分析不同洗脱处理得到上清液的成分,探讨洗脱处理去除的热解副产物组成;比较洗脱前后生物质炭的漫反射傅里叶变换红外光谱,分析洗脱处理对其表面官能团的影响。结果表明,四种洗脱处理均能不同程度地去除生物质炭表面附着的热解副产物,为使洗脱处理对生物质炭性质的影响较小,据此建议以醇-水处理和水洗处理作为生物质炭吸附铜离子研究的前处理方法。  相似文献   

5.
园林废弃物处理不合理,不仅会造成植物营养元素的流失,还会造成环境污染。以法国梧桐Platanus orientalis,桂花Osmanthus fragrans,红叶石楠Photiniax fraseri和樟树Cinnamomum camphora等南方城市典型园林绿化废弃物生物质为原材料,研究热解温度(350,500和650℃)对不同园林废弃物生物质炭产率和理化特性的影响。结果表明:生物质炭的产率随着热解温度的升高呈下降趋势,且在350~500℃温度段变化较明显;原材料灰分质量分数对生物质炭产率有明显影响,法国梧桐叶片炭产率最高,其枝条炭产率最低。高温度条件下制备的生物质炭芳香性增强,亲水性和极性减弱,650℃制备的红叶石楠枝条炭和法国梧桐枝条炭的芳香性较强,350℃制备的法国梧桐叶炭亲水性和极性最强。桂花和樟树叶片炭的全氮质量分数较高,叶片炭全硫质量分数高于枝条炭。随着热解温度的升高,生物质炭表面的含氧官能团种类和数量逐渐减少,红叶石楠叶片炭在高温条件下官能团仍明显存在。利用扫描电镜和X-ray能谱分析生物质炭(500℃)发现,樟树枝条炭和法国梧桐枝条炭孔隙结构较发达,红叶石楠叶片炭中磷、镁、钾、钙等元素质量分数较高。综上所述,园林废弃物生物质炭的特性主要受原材料和热解温度的影响,不同温度下制备的园林废弃物生物质炭具有不同的产率和理化特性。  相似文献   

6.
生物炭是生物质在绝氧或限氧条件下热解的固态产物。通常因具有特殊的孔隙和官能团结构及稳定的物理化学性质等特点,广泛应用于气态或液态污染物的吸附,并成为当今生物质能资源化利用研究热点。本文介绍了生物质的热解制取生物炭工艺、生物炭生成机理及目前应用领域,重点评述了生物炭制备及其结构特性的影响因素,生物炭吸附特性的影响因素,并提出了生物质热解制备生物炭及其在吸附领域应用的未来研究方向。  相似文献   

7.
木薯渣基生物质炭对水中Cd2+ Cu2+的吸附行为研究   总被引:3,自引:1,他引:2  
以木薯渣为原料,制备不同温度(350、450、550℃)的生物质炭(BC350、BC450、BC550),对其性质进行表征,探究吸附时间、溶液初始浓度、温度、p H对生物质炭吸附Cd~(2+)、Cu~(2+)作用的影响。结果表明:生物质炭对Cd~(2+)、Cu~(2+)的吸附平衡时间随着生物质炭热解温度的升高而缩短,伪二级动力学模型能较好地描述吸附动力学特性(R20.983)。吸附等温线符合Freundlich模型和Langmuir模型,但Freundlich模型拟合的线性更好,R2分别在0.951~0.998和0.992~0.998之间,说明生物质炭对Cd~(2+)、Cu~(2+)的吸附为多层吸附。lg KF值表示吸附能力,随生物质炭热解温度的升高而增大,说明BC550吸附效果最好,对Cd~(2+)、Cu~(2+)的最大吸附量分别为15.55和5.44 mg·g-1。生物质炭对Cd~(2+)、Cu~(2+)的吸附具有自发的特性,吸附量随p H的增加先增加后下降,最适p H分别为5.5和6.5。  相似文献   

8.
以椰衣和椰壳作为原材料,在300、500和700℃条件下热解制备生物质炭,表征其物理化学性质;同时,研究所制备的生物质炭对溶液中Pb~(2+)的吸附特征与机制.结果表明:随着热解温度升高,所制备的生物质炭的含氧官能团减少,灰分、pH值、阳离子交换量、比表面积和碱性官能团的含量随之升高.热解温度升高可促进生物质炭对Pb~(2+)的吸附;Langmuir模型可较好地描述所制备的生物质炭对Pb~(2+)的等温吸附;在供试的6种生物质炭中,吸附量最高的是在700℃条件下制备的椰衣生物质炭,且优于大多数已报道的用其他材料制备的生物质炭.拟合发现,所制备的生物质炭的阳离子交换量和灰分含量是影响其吸附Pb~(2+)的重要因子,在初始Pb~(2+)质量浓度为200mg/L条件下,椰衣生物质炭对Pb~(2+)的稳定吸附量为9.83~13.91mg/g,椰壳生物质炭为9.68~25.16mg/g.这表明椰壳生物质炭吸附态Pb~(2+)比椰衣生物质炭吸附态Pb~(2+)更稳定.  相似文献   

9.
生物质快速热解制得的生物油可以用作燃料和化工产品,具有替代化石能源的巨大潜力,生物油的产率和组成取决于生物质组成和工艺操作参数。通过对生物质快速热解反应及热解反应器的介绍,着重讨论了生物质原料、热解反应温度、热解时间、升温速率、蒸气停留时间、进料率速度、颗粒大小、生物量组成、催化剂及其原料预处理对生物油产率的影响,以期为今后生物质热解的相关研究提供参考。  相似文献   

10.
谢为  卜权 《江苏农业科学》2020,48(6):194-199
选取香醋生产过程中产生的大量副产物醋糟为原料,通过微波热解的方法来制备生物炭,结合表征手段和吸附试验,来研究不同反应条件(热解反应温度、微波功率)对所制备醋糟生物炭的理化性质及其吸附性能的影响。醋糟微波热解结果显示,在热解反应温度450℃、微波功率900 W的条件下,醋糟生物炭的产率最高,达到60.37%。表征结果表明,醋糟生物炭中含有醚类、酚类和醇类物质,其质量损失主要发生在热解温度300~400℃的范围内。醋糟生物炭对铅离子的吸附试验结果表明,在热解反应温度350~550℃的范围内,随着温度的升高,醋糟生物炭的吸附效果逐渐降低,且吸附效果降低的速率近似不变,其最高平衡吸附量在350℃时达到137.45 mg/g;在热解功率500~900 W的范围内,随着热解功率的升高,醋糟生物炭的吸附效果先降低再升高,其最高平衡吸附量在900 W时达到141.975 mg/g。  相似文献   

11.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

12.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

13.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   

14.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

15.
两种生物炭对Pb的吸附特性研究   总被引:2,自引:2,他引:0  
以木子壳、米糠为前驱体,650℃制备生物炭,通过扫描电子显微镜、X射线粉末衍射仪和比表面积分析仪等手段表征其物理化学性质,探究粒径、矿物组分、初始浓度及时间等因素对生物炭吸附Pb~(2+)效果的影响。结果表明,木子壳生物炭比表面积虽远小于米糠生物炭,但对溶液中Pb~(2+)有很强的吸附效果,等温吸附曲线符合Langmuir吸附模型,最大吸附量达165.62 mg·g~(-1),明显高于米糠生物炭(58.92 mg·g~(-1))。同时XRD分析显示木子壳生物炭含大量矿物组分且吸附Pb~(2+)后有沉淀生成。  相似文献   

16.
载镁香蕉秆基生物炭对氮磷的吸附性能研究   总被引:3,自引:0,他引:3  
以香蕉秸秆为原料,氯化镁(MgCl2)为改性剂,通过限氧热解法(温度673 K)制备生物质炭。利用扫描电镜、傅里叶红外光谱、X射线衍射等技术分析了镁改性生物质炭对氮、磷的吸附机理。结果表明,通过镁改性,生物质炭对氮、磷的吸附量得到显著提高,最大吸附量分别达13.80、18.21 mg·g-1;对氮、磷的等温吸附曲线均符合Langmuir曲线,为单层吸附,吸附机理主要以化学吸附为主;吸附平衡时间约为150 min,氨氮和磷的吸附动力学均符合准二级动力学拟合方程,吸附过程受多步骤控制。该载镁生物质炭可以作为潜在吸附剂去除废水和富营养化水体中过量的氮、磷。  相似文献   

17.
生物质炭特性及施用管理措施对作物产量影响的整合分析   总被引:10,自引:0,他引:10  
【目的】大量研究表明农田施用具有特殊理化性质的生物质炭对作物产量具有显著影响,采用大样本统计方法量化生物质炭自身特性及施用管理措施对作物产量的影响程度。【方法】通过收集全球范围内公开发表的97篇生物质炭施用与土壤改良、作物生长有关的相对独立研究,共获得匹配数据819组。运用数据整合分析方法(Meta-analysis)量化生物质炭自身特性(原料、制备温度、C/N、pH)在人为施用管理(施用量与施用时长)、土壤属性(质地和酸碱度)等条件下对作物产量变化的影响。【结果】统计分析表明,与不施用生物质炭相比,施用生物质炭具有显著的增产效应,作物平均增产15.0%。生物质炭施用的增产效果在不同作物上存在显著差异,经济作物平均增产25.3%,显著高于粮食作物(10.0%)。生物质炭自身特性对作物产量影响显著,当制备温度600℃、pH7、C/N值介于20—300时,均具有显著的增产效果,增产范围为9.2%—26.6%,且增产幅度随着制备温度和其自身C/N值的增加而下降。对于不同质地和酸碱度的土壤而言,施用生物质炭的增产效果表现为黏质土壤砂质土壤壤质土壤;施用于酸性土壤可增产29.2%,分别是中性及碱性土壤的7.9和2.5倍。人为管理条件下,当生物质炭施用量10.0 t·hm~(-2)时,可显著提高作物产量,达到18.0%,施用量80.0 t·hm~(-2)后增产效果不显著。施用生物质炭的增产效果随着施用时间的增加而呈下降趋势,施用半年至两年内可增产13.4%—17.5%,超过两年,增产效应降至9.6%。【结论】生物质炭的增产效应随着生物质炭的属性、施用量和施用时长的不同有所差异。根据作物类型与土壤属性选择适宜特性的生物质炭,适时酌情间断性施用,不仅可以达到持续增产的目的,也降低成本,提高经济效益,可以作为现代可持续农业管理措施的选择。  相似文献   

18.
裂解温度及高锰酸钾活化对棉花秸秆生物炭性状的影响   总被引:1,自引:0,他引:1  
采用不同浓度的高锰酸钾溶液浸渍棉花秸秆在不同裂解温度下制备棉花生物炭,研究了高锰酸钾浓度及裂解温度对棉花生物炭性状的影响。结果表明,不同制备条件下获得的棉花生物炭的产率位于22.22%~47.17%之间,随着裂解温度的升高而降低,而不同生物炭灰分含量(9.99%~28.83%)、pH(9.7~12.1)及比表面积(2.34~167.58 m2·g-1)随着裂解温度的提高逐渐升高。棉花生物炭中元素以C和O元素为主。高锰酸钾处理会显著提高棉花生物炭pH及比表面积,并使炭表面官能团种类更为丰富。  相似文献   

19.
我国南方3种主要作物秸秆炭的理化特性研究   总被引:2,自引:0,他引:2  
以我国南方水稻(D)、棉花(M)和玉米(Y)3种主要作物秸秆为研究对象,研究了400、450、500℃温度下制备的作物秸秆炭的主要理化特性。研究结果表明:生物炭的出产率因热解温度和秸秆种类而异,一般低温出产率高,高温趋于稳定,3种物料灰分含量是DYM;生物炭p H值随热解温度升高而增大,且均呈碱性;比表面积总体上随温度增加而增加;有机碳和总氮含量随热解温度升高而降低,总磷和钾含量随热解温度升高而增加;不同秸秆炭所含官能团基本相同,-OH随温度升高呈减弱趋势,而芳香性结构增加。经综合对比,推选500℃下制备的生物炭较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号