首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
采用野生型水稻(WT,高硅)和硅缺失突变体水稻(lsi1,低硅)秸秆为原材料制备成300、500、700℃ 3种温度生物炭,探究高低硅秸秆生物炭对Cd2+的吸附特性及作用机制。野生型和突变型水稻秸秆原料总硅含量分别为17.88%和7.42%,制备出的高硅生物炭相对于低硅生物炭具有较高的硅含量、较大的比表面积和孔径。通过元素分析、电镜能谱扫描分析(SEM-EDS)、傅里叶红外光谱分析(FTIR)以及比表面积分析(BET-N2)等对两种生物炭进行分析,结果表明随温度上升两类生物炭均表现出产率下降、pH增大、比表面积上升,高低硅生物炭均能在471、788、1 090 cm-1波峰处观察到Si-O-Si键。吸附实验表明,高低硅生物炭均在pH为6、固液比为1 g·L-1时对水溶液中Cd2+吸附效果最佳。吸附动力学模型结果表明,高低硅生物炭的吸附动力学过程均符合准二级动力学模型(R2 >0.9),说明该过程以化学吸附为主。通过Langmuir和Freundlich模型进行等温吸附拟合,均能较好反映出高低硅生物炭的吸附行为与特性。结合高低硅生物炭的基本理化性质、FTIR分析和SEM-EDS观察的结果表明生物炭吸附机制主要为离子交换、沉淀和官能团络合作用。研究表明,热解温度较高的高硅生物炭吸附效果更好,这可能与其具有较高的硅含量、较大的比表面积与孔体积、较多的阳离子及较为丰富的官能团有关。  相似文献   

2.
采用不同浓度的KMnO_4溶液浸渍小麦秸秆用于制备生物炭。研究了KMnO_4浓度及裂解温度对生物炭理化性质的影响。结果表明:小麦秸秆生物炭的得率随着裂解温度的升高而降低,不同处理生物炭得率位于28.05%~61.11%之间,KMnO_4处理秸秆后可明显提高生物质炭的比表面积,300℃裂解温度下制备的生物炭表面官能团最为丰富,且随着裂解温度的提高,生物炭表面官能团数量不断下降。  相似文献   

3.
不同裂解温度对梨树枝条生物炭理化性质的影响   总被引:1,自引:0,他引:1  
[目的]本文旨在研究梨树枝条在不同温度下裂解所得生物炭的理化性质差异,确定适宜的制备生物炭温度范围,为梨树修剪枝条资源化利用提供新的途径。[方法]以粉碎梨树枝条为原料,在惰性气体包围下,在不同裂解温度(300~900℃)下制备生物炭,研究不同裂解温度对生物炭理化性质的影响。[结果]裂解温度由300℃上升到900℃,生物炭产率由61%显著降低到24%(P0.05),p H值由7.3显著上升到11.7(P0.05),生物炭中碳含量增加而氮含量显著降低,钾、钙、镁、硼、铁、铜等元素含量均先升高后保持稳定;阳离子交换量随温度的升高先显著下降后保持稳定。红外光谱分析表明随着裂解温度的升高,枝条内O—H和C—H键断裂,形成难降解的芳香烃类物质;扫描电镜分析表明生物炭孔隙度随着裂解温度升高而增加,温度越高,孔数量越多,比表面积越大,700℃下制备的生物炭比表面积相比300℃增加了50%;同时,比表面积及孔体积也随温度的升高而增加,吸附性增强。[结论]制备枝条生物炭时,将裂解温度设置为500~700℃时,元素含量相差不大,微孔和大孔数量基本达到最高水平,吸附性能达到最佳。  相似文献   

4.
本文研究了不同热解温度条件下牛骨生物炭理化性质及对 Cd2+的吸附特性,采用限氧控温慢速热裂解的方式,在 300、350、400、500、700 ℃和900 ℃条件下制备牛骨生物炭。分别采用热重分析仪、傅里叶变换红外光谱以及扫描电镜能谱仪等设备对牛骨生物炭进行表征,并通过批量吸附实验分析其对Cd2+的吸附特性。结果表明:牛骨生物炭pH值、灰分含量随热解温度提高而增加,芳构度逐渐增强,孔径与比表面积增大,而挥发分、有机碳含量与全氮含量减少;准二级动力学模型可以准确拟合5种牛骨生物炭对Cd2+的吸附动力学过程(R2>0.999),在接近吸附平衡时,吸附速率由颗粒内扩散主导;牛骨生物炭对Cd2+等温吸附过程更符合Langmuir模型,700 ℃条件下制备的牛骨生物炭对Cd2+的吸附效果最好,最大平衡吸附量为44.32 mg·g-1;随着热解温度增加,牛骨生物炭对Cd2+吸附机制中官能团络合作用减弱,表面吸附、阳离子交换以及π电子配位作用增大。在实际规模化制备牛骨生物炭过程中应充分考虑能耗成本以及尾气收集问题。  相似文献   

5.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

6.
以花生壳为原料、KOH为改性剂,考察碱改性工艺流程中的参数(热解温度、碱炭比和碱处理方式)对改性生物炭吸附盐酸四环素(TCH)的影响。通过吸附实验,以原状生物炭(BC600)为对照,探讨改性工艺参数的变化对吸附性能的影响。对生物炭进行扫描电镜(SEM)、能谱(EDS)、比表面积与孔径分析、傅里叶红外光谱(FTIR)、pHPZC等表征,探究生物炭对TCH的吸附机理。结果表明:碳化温度600℃、碱炭比2∶ 1、使用碱后处理-熔融法制备的改性生物炭(Post-MBC)对TCH去除能力最强。在25℃、pH=4的环境下,0.1 g的Post-MBC对40 mL 0.06 mg·mL-1的TCH去除率可达99.07%,Post-MBC对TCH的理论最大吸附量可达240.94mg·g-1(45℃)。Post-MBC的比表面积和微孔体积可达863.56 m2·g-1和0.26 cm3·g-1,KOH改性使生物炭的亲水性降低、表面带有负电荷,提高了对疏水性污染物和带正电荷污染物的吸附能力。生物炭的动力学模型更符合McKay方程,三种等温吸附模型的相关系数均较高。改性后的生物炭对TCH的吸附以化学吸附为主导,吸附过程吸热且自发进行。吸附机理包括孔隙填充作用、π-π相互作用、氢键作用、静电相互作用和疏水相互作用。  相似文献   

7.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

8.
热解温度是影响生物炭表面性质的重要因素。在250~450℃范围内制备玉米秸秆生物炭(CB)和杨木生物炭(PB)。采用X-射线光电子能谱仪对生物炭的表面元素进行分析,发现各元素含量随热解温度而变化,2种生物炭的变化规律不同。傅里叶变换红外分析表明,热解温度升高造成生物炭基团的变化,C=O基团增多,芳香性增强。研究生物炭在水中的氮磷释放行为发现,随着热解温度的升高,NH4+-N和NO3--N的释放呈现先增加后减少的趋势;CB的总磷释放有所增加,PB的总磷释放先增加后降低。不同热解温度的生物炭,其营养元素的释放速率在初期存在一定差别,释放过程在48 h内基本完成。生物炭的表面性质及氮磷释放行为与热解温度及生物质来源密切相关。  相似文献   

9.
研究了在不同温度下制备的3种芦苇生物炭的基本理化性质及表观性能,以及不同时间、初始溶液pH值、初始溶液Pb2+浓度下这3种生物炭吸附率的变化。结果表明:对于3种生物炭的制备,随着温度升高,生物炭产率降低,灰分升高,pH值升高;随着热解温度升高,芦苇生物炭的C、N含量随之增加,而O、H含量随之降低;BET比表面积、Langmuir比表面积、T-plot微孔比表面积、BJH吸附累积比表面积均表现为L500L700L300;从生物炭对氮气吸附的量上看,存在L500L700L300的规律;吸附试验表明,500℃下制备的生物炭L500的吸附效果最佳,最佳吸附条件是初始溶液pH值为6,吸附时间为150 min,吸附温度为25℃。  相似文献   

10.
为比较3种新型改性生物炭对溶液中镉(Cd)的吸附行为,以玉米秸秆生物炭为原料,制备巯基改性生物炭(S-BC)、铁改性生物炭(Fe-BC)和氮掺杂生物炭(N-BC),分析改性前后生物炭的元素组成、比表面积、表面官能团等性质的变化,通过系统的吸附试验,比较3种改性生物炭对Cd的吸附性能和作用机理。结果表明:与未改性生物炭(BC)相比,N-BC和Fe-BC比表面积分别增加了6.3和9.0倍,总孔体积分别增加了2.68和4.08倍。S-BC因改性后表面光滑,使得生物炭比表面积减小,但其表面官能团变化明显,S-BC在2 977 cm-1处出现新的吸收峰对应脂肪族(C-H)的伸缩振动,而且在1 089 cm-1、1 044 cm-1位置出现双特征吸收峰。3种生物炭对Cd2+的吸附主要为化学吸附过程为主,且Langmuir吸附等温线模型所拟合的热力学吸附优于Freundlich吸附等温模型,推测N-BC、Fe-BC、S-BC 3种生物炭对Cd2+的吸附过程为单分子层物理吸附。通过Langmuir模型计算可以得到几种生物炭对Cd2+最大吸附量表现为Fe-BC (69.11 mg·g-1) > N-BC (61.92 mg·g-1) > S-BC (53.85 mg·g-1) > BC (40.34 mg·g-1)。  相似文献   

11.
我国南方3种主要作物秸秆炭的理化特性研究   总被引:2,自引:0,他引:2  
以我国南方水稻(D)、棉花(M)和玉米(Y)3种主要作物秸秆为研究对象,研究了400、450、500℃温度下制备的作物秸秆炭的主要理化特性。研究结果表明:生物炭的出产率因热解温度和秸秆种类而异,一般低温出产率高,高温趋于稳定,3种物料灰分含量是DYM;生物炭p H值随热解温度升高而增大,且均呈碱性;比表面积总体上随温度增加而增加;有机碳和总氮含量随热解温度升高而降低,总磷和钾含量随热解温度升高而增加;不同秸秆炭所含官能团基本相同,-OH随温度升高呈减弱趋势,而芳香性结构增加。经综合对比,推选500℃下制备的生物炭较好。  相似文献   

12.
我国土壤重金属污染严重,生物炭因其特殊的理化性质,能够有效治理该污染。该文综述了影响生物炭去除效果的主要因素及其影响机制。不同原料制得生物炭具有不同理化性质,主要体现在比表面积的差异。农作物废料简单易得,制得生物炭修复效果显著,可作为最佳原料。制备温度和改性条件影响生物炭的比表面积、孔隙结构、碱性官能团等特性。其制备温度宜取600~700?℃,宜采用高锰酸钾改性法。生物炭施用量和配合施用材料主要影响土壤pH。其施用量宜控制在5%以内,配合施用材料宜选取碱性矿物材料(强碱性矿物质材料除外)和畜禽粪便类有机肥(猪粪肥除外)。  相似文献   

13.
几种生物质热解炭基本理化性质比较   总被引:5,自引:1,他引:4  
生物炭由生物质材料在无氧或缺氧条件下经高温裂解形成,是土壤改良和废弃物处理的良好改良剂。选取五种生物质原料(大豆秸秆、玉米秸秆、水稻秸秆、稻壳和松针,均为农林废弃物),经300、400、500、600和700℃热解2 h,测定其结构及理化性质。研究结果表明,生物炭炭化结构良好清晰;生物质形成生物炭在BET比表面积、T-PLOT微孔容积、p H和阳离子交换量值方面均随热解温度升高而升高,大豆秸秆和玉米秸秆比表面积在700℃时达到最高;平均孔径随热解温度升高有一定程度下降;700℃下水稻秸秆和稻壳形成生物炭具有最高硅含量。除松针炭外,其余各生物炭呈碱性。  相似文献   

14.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

15.
生物质炭特性及施用管理措施对作物产量影响的整合分析   总被引:10,自引:0,他引:10  
【目的】大量研究表明农田施用具有特殊理化性质的生物质炭对作物产量具有显著影响,采用大样本统计方法量化生物质炭自身特性及施用管理措施对作物产量的影响程度。【方法】通过收集全球范围内公开发表的97篇生物质炭施用与土壤改良、作物生长有关的相对独立研究,共获得匹配数据819组。运用数据整合分析方法(Meta-analysis)量化生物质炭自身特性(原料、制备温度、C/N、pH)在人为施用管理(施用量与施用时长)、土壤属性(质地和酸碱度)等条件下对作物产量变化的影响。【结果】统计分析表明,与不施用生物质炭相比,施用生物质炭具有显著的增产效应,作物平均增产15.0%。生物质炭施用的增产效果在不同作物上存在显著差异,经济作物平均增产25.3%,显著高于粮食作物(10.0%)。生物质炭自身特性对作物产量影响显著,当制备温度600℃、pH7、C/N值介于20—300时,均具有显著的增产效果,增产范围为9.2%—26.6%,且增产幅度随着制备温度和其自身C/N值的增加而下降。对于不同质地和酸碱度的土壤而言,施用生物质炭的增产效果表现为黏质土壤砂质土壤壤质土壤;施用于酸性土壤可增产29.2%,分别是中性及碱性土壤的7.9和2.5倍。人为管理条件下,当生物质炭施用量10.0 t·hm~(-2)时,可显著提高作物产量,达到18.0%,施用量80.0 t·hm~(-2)后增产效果不显著。施用生物质炭的增产效果随着施用时间的增加而呈下降趋势,施用半年至两年内可增产13.4%—17.5%,超过两年,增产效应降至9.6%。【结论】生物质炭的增产效应随着生物质炭的属性、施用量和施用时长的不同有所差异。根据作物类型与土壤属性选择适宜特性的生物质炭,适时酌情间断性施用,不仅可以达到持续增产的目的,也降低成本,提高经济效益,可以作为现代可持续农业管理措施的选择。  相似文献   

16.
不同原料生物炭理化性质的对比分析   总被引:2,自引:0,他引:2  
为研究不同原料生物炭理化性质的差异,以苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭、污泥生物炭和褐煤生物炭6种生物炭为测试材料,利用傅里叶红外光谱仪和Boehm滴定法对生物炭表面官能团进行定性和定量分析,用电子扫描显微镜观察生物炭表面形貌,并测定生物炭的pH值、有机碳含量和阳离子交换量等基本理化性质。结果表明,除污泥生物炭呈弱酸性外(pH=6.76),其他生物炭均呈碱性(pH=8.49~9.96)。苜蓿秸秆生物炭有机碳含量最高(588.43 g·kg-1),污泥生物炭最低(168.17 g·kg-1)。阳离子交换量大小排序为,苜蓿秸秆生物炭、棉花秸秆生物炭 > 葡萄藤生物炭 > 小麦秸秆生物炭 > 污泥生物炭 > 褐煤生物炭。FTIR图谱表征显示,生物炭表面存在芳香烃类和含氧基团,生物炭的结构以芳环骨架为主。苜蓿生物炭表面官能团总数最多,污泥生物炭最少。扫描电镜(SEM)结果表明,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭表面有明显孔隙结构,褐煤生物炭和污泥生物炭表面并无明显的孔隙结构。综上,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭适用农田土壤改良与培肥,褐煤生物炭和污泥生物炭可尝试用于污染土壤的修复,同时污泥生物炭可用于盐碱土的改良。  相似文献   

17.
为揭示不同温度和时间炭化的生物质炭微观结构及理化性质差异,以烟秆为原料,研究炭化温度(300、450、600℃)和时间(1、3h)对烟秆生物质炭特性及元素组成的影响。结果表明,烟秆生物质炭呈多孔、高比表面积结构,较为完整地保留了烟秆的组织结构。烟秆生物质炭pH值、有机碳含量、全钾含量和C/N比随炭化温度的升高和时间的延长而升高,而产出率和全氮含量则呈降低趋势。炭化条件对烟秆生物质炭理化性质具有明显影响,炭化温度的影响大于炭化时间。生物质炭的农业应用为烟秆无害化处理提供了新途径,但受生产成本及烟秆就地炭化水平影响,烟秆生物质炭推广应用还有一定的局限性。  相似文献   

18.
废报纸生物质炭的制备及对铜离子的吸附性能   总被引:1,自引:1,他引:0       下载免费PDF全文
  目的  以废报纸为原料,通过氮气(N2)保护在不同热解温度下制备生物质炭,并探讨废报纸基生物质炭对铜离子(Cu2+)的吸附性能和吸附机制。  方法  采用元素分析、比表面积分析仪(BET)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电镜(SEM)、X射线衍射仪(XRD)和原子吸收光谱仪(AAS)等对生物质炭进行表征。  结果  所制备的生物质炭具有多孔结构,比表面积高(211 m2·g-1),有利于从水中去除Cu2+。生物质炭的物理和化学性质随着热解温度的变化而变化。随着热解温度的升高,生物质炭的芳香性、比表面积、pH和灰分含量逐渐增加,而氢、氮和氧含量下降。同时进行批量吸附试验,分析溶液初始pH、吸附时间、初始浓度、不同吸附温度对生物质炭吸附容量的影响。热解温度为400、500、600℃的生物质炭在30℃、pH为5.0的条件下最大吸附容量分别为107、115和138 mg·g-1。伪二级动力学模型和Langmuir等温吸附模型能很好地模拟吸附过程,表明在此吸附过程中,化学吸附是限速步骤,吸附发生在吸附剂内特定的均相位点(单层吸附)。通过热力学模型计算所得ΔHo为正值,表明吸附过程是吸热反应。此外,生物质炭的吸附机制包括沉淀作用、离子交换、π-π作用和络合反应。  结论  本研究以废报纸为原料,所制备的生物质炭是具有一定应用前景的、环境友好的、高效的Cu2+吸附材料。  相似文献   

19.
玉米秸秆碱化处理制备的生物炭吸附锌的特性研究   总被引:9,自引:7,他引:2  
为研究玉米秸秆碱化处理制备的生物炭对模拟废水中Zn的吸附特性,以玉米秸秆为原料制备玉米秸秆生物炭(BC),同时对玉米秸秆进行碱化浸渍处理来获得碱化改性生物炭(K-BC),并在此基础上研究了BC和K-BC对Zn的吸附动力学、吸附热力学以及pH对其吸附的影响,结合元素分析、比表面积孔径测定、扫描电镜及红外光谱等表征来分析其对Zn的吸附差异。结果表明:当Zn浓度为60 mg·L~(-1),BC和K-BC对Zn的吸附过程由快速吸附和慢速吸附2个阶段组成,且符合准二级动力学吸附模型;BC和K-BC对Zn的吸附量随温度(288~318 K)和Zn浓度(10~120 mg·L~(-1))的增加而增加,其中K-BC对Zn的理论饱和吸附量大于BC,且由Freundlich模型对吸附过程进行描述较为合适;热力参数表明BC和K-BC对Zn的吸附为自发、吸热和无序度增加的过程;在pH_2.0~5.0范围内,当pH为5.0时K-BC对Zn的吸附量最大,吸附率接近50%。由BC和K-BC结构表征及理化特性差异可以推知,这2种生物炭对Zn吸附差异来源于其比表面积、孔隙结构和芳香结构之间的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号