首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   6篇
林业   9篇
  6篇
综合类   10篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
为进一步提高芳烃的产率,减少催化剂的失活,采用Zn和Na_2CO_3对HZSM-5催化剂复合改性,探讨了Zn的负载量对生物质催化热解气相重整制备芳烃的产率、选择性以及抗结焦性能的影响,同时采用XRD、BET、NH3-TPD以及SEM对反应前后催化剂进行表征。结果表明:ZnNa_2CO_3复合改性没有改变HZSM-5晶体骨架结构,Zn均匀的负载在催化剂的表面,比表面积随着Zn的负载量的增加而减少,孔径随着Zn的负载量的增加而加大;改性Zn-Na_2CO_3/HZSM-5催化剂具有较强的催化活性以及脱氧效果,有效的提高芳烃的产率,抑制了稠环芳烃以及焦炭的生成,使BTXE的选择性增加;当Zn的负载量为5%时,单环芳烃含量最高为88.05%,BEXT增加12.92%,而焦炭含量最低为23.69%。Zn的添加有效的提高了催化剂抗积碳能力,促进了氢转移反应的形成,使其芳构化能力提升。  相似文献   
2.
3.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   
4.
采用不同的合成工艺,在低摩尔比的前提下设计出三聚氰胺改性脲醛树脂配方,并对三聚氰胺加入量、固化剂的种类及剂量进行探讨,优化出一种最佳工艺。研究表明:二次投料可以有效地降低游离甲醛的含量,提高固含量,但力学性能降低。随着三聚氰胺、固化剂加入量的增加,甲醛释放量明显降低。不同固化体系下胶合板的力学性能不同,甲醛释放量均达到了E_0级,胶接强度也达到了国家标准Ⅱ类板的要求。同时,通过对板的胶接强度和甲醛释放量等指标的测定得出:摩尔比为1.0:1的NQ-J0-1脲醛树脂,同时加入5%的固化体系A,此时的性能最佳。  相似文献   
5.
为了进一步提升生物油的品质,该研究采用竹材和低密度聚乙烯(Low-Density Polyethylene, LDPE)为原料,采用金属氧化物和HZSM-5(HZ)为催化剂催化生物质共热解,探索生物质与塑料的混合比例、金属氧化物的种类(HZSM-5、CaO、MgO、CeO_2、La_2O_3和SnO_2)、HZSM-5和MgO的混合比例以及组合方式(分层模式和混合模式)对生物质催化共热解制备生芳烃和生物炭的影响,同时对其添加效果进行分析。结果表明:LDPE和金属氧化物的添加可以有效的促进生物质的转化,降低了生物油的产率(9.76%~23.96%),提高生物油的品质和生物炭的石墨化程度,二者具有明显的协同效果,MgO促进了烷基酚的形成,CaO促进了烯烃的转化,而La_2O_3和SnO_2明显的促进是呋喃的生成。而且混合模式可以有效的提高芳烃的产率,当生物质:LDPE=1:1,HZSM-5:MgO=2:1时,芳烃含量最高为84.99%,苯、甲苯、二甲苯和乙苯(SBTXE)的总含量达到了60.09%,而甲苯和二甲苯含量分别达到了25.97%和16.91%,混合模式有效促进了苯、甲苯和二甲苯的选择性,分层模式有效促进了烷基苯的转化,且MgO的添加明显抑制了稠环芳烃的形成。  相似文献   
6.
普洱市发展生物质固体燃料产业的前景与对策   总被引:1,自引:0,他引:1  
介绍了普洱市的能源消费现状与工业生物质能终端消费情况,分析了普洱市林业、农业秸秆资源概况,展望了普洱市发展生物质固体燃料产业的前景,提出了发展对策,指出普洱市可基于现有较发达的木材工业体系,优先建立与发展基于林业生物质资源的生物质固体燃料产业带。  相似文献   
7.
改性微-介孔催化剂的制备及其催化生物质热解制备芳烃   总被引:2,自引:2,他引:0  
采用K2CO3对HZSM-5催化剂进行处理,制备微孔-介孔多级孔HZSM-5催化剂,研究了碱液浓度(0.2~0.6 mol/L)对制备多级孔催化剂及其多级孔催化剂对催化生物质热解制备芳烃的产率以及选择性的影响规律,同时采用比表面积和孔径分布仪、X射线衍射仪、X射线光电子能谱、扫描电镜、化学吸附仪、傅里叶红外光谱仪、热重分析对催化剂进行了表征,结果表明:碱处理后催化剂依然保持MFI结构,在脱除分子筛中非骨架硅的同时,产生介孔结构,随着预处理浓度的增加,介孔含量增加,晶内介孔的利用率以及分子筛的扩散性能增加,但使总酸量降低,同时,改性催化剂可以明显的提高木质素来源的生物质热解产物芳烃的产率(67.75%~82.81%)降低焦炭的生成(31.26%~28.06%),提高生物油中萘族产物(甲基萘以及二甲基萘)的选择性,使C10+以上芳烃含量增加,当采用0.5 mol/L的K2CO3处理时,单环芳烃质量分数最高为82.81%,而焦炭质量分数最低为28.06%。  相似文献   
8.
对不同固化体系下低摩尔比脲醛树脂胶黏剂的固化时间、适用期进行探讨,研究其对胶接性能、甲醛释放量的影响。结果表明:不同固化体系,物理力学性能不同,胶接强度均达到国家标准II类板的要求,甲醛释放量均达到E0级。当使用NQ-J0-1,n甲醛∶n脲素=1∶1,V固化剂∶m胶液=5 mL∶100 g,性能最佳。  相似文献   
9.
为了提高芳烃的产率,提高生物油的品质,该研究采用金属改性的生物质来源的活性炭为催化剂,催化生物质热解二维气相重整制备芳烃,探讨了金属的种类(Al、Cu、Zn、Ni)以及金属的负载量(1%、5%、10%)对热解产品的产率以及选择性的影响,同时采用X-射线衍射仪、比表面积和孔径分布仪、化学吸附仪、扫描电子显微镜、傅里叶红外光谱和元素分析等对催化剂进行表征,结果表明:金属改性有效提高了催化剂的活性位点以及酸性,进而通过电子转移和电荷转移相互作用促进脱甲氧基和脱氧反应生成碳氢化合物,不同金属产生的最大碳氢化合物质量分数为:10%Ni/AC催化剂产生的最高为73.78%,其次为5%Zn/AC催化剂,达到了55.14%,10%Cu/AC和5%Al/AC催化剂产生的最少,分别为42.53%和40.75%。高Lewis酸含量的Al促进了烯烃和酚类化合物的生成,低酸性的Cu促进了焦炭含量增加,而高Bronsted酸含量的Zn和Ni促进了单环芳烃的生成,使苯及其同系物、苯酚、烷基酚的选择性增加,脱氧和脱甲氧基效果显著,当Ni的负载量达到10%时,其生成的碳氢化合物的成分占比最高为73.78%,芳烃化合物的成分占比达到67.54%,苯的选择性达到了52.15%,有效提高了生物油的品质。  相似文献   
10.
木质生物质催化热解制备富烃生物油研究进展   总被引:1,自引:0,他引:1  
生物油是木质生物质等原料经过热解获得的绿色产物,富含多种化学和生物活性物质,在石油替代方面具有发展潜力。生物质催化热解技术是制备高品质生物油的主要途径,但由于生物油含氧量比较高、目标产物选择性比较低、催化剂易结焦失活,限制了其应用。笔者从木质生物质热解机理及其反应途径、催化剂(金属氧化物、金属盐类、微孔催化剂、介孔催化剂)及其催化热解转化机理与产物调控机制、供氢试剂(四氢化萘、甲醇、废旧塑料、废弃油脂及其他供氢试剂)及其共催化热解转化机理等方面综述了木质生物质催化热解制备高品质生物油的进展,概述了催化热解过程中生物油的热解特性、产物组成以及转化机理,并对存在的问题及其解决方案进行了分析,展望了未来的发展方向,以期为木质生物质的高效转化利用提供依据和参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号