首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用720羽1日龄白羽肉鸡,随机分为六个不同日粮的处理组:白羽肉鸡基础日粮、减少日粮中磷酸氢钙6kg分别单独添加3种普通植酸酶和2种耐高温植酸酶,研究耐高温植酸酶对肉鸡生产性能的影响及饲料制粒前后的酶活损失率。试验结果显示:与基础日粮对比,在降磷酸氢钙日粮中添加酶的各组(2号酶除外)均差异不显著,其中微颗粒耐高温植酸酶有降低料肉比的趋势,且与普通植酸酶2号酶成差异极显著(p〈0.01);加酶饲料制粒前后的酶活,普通植酸酶的损失率均大于20%,而耐高温植酸酶的损失率均小于10%。  相似文献   

2.
选用720羽1日龄白羽肉鸡,随机分为六个不同口粮的处理组:白羽肉鸡基础日粮、减少日粮中磷酸氢钙6kg分别单独添加3种普通植酸酶和2种耐高温植酸酶,研究耐高温植酸酶对肉鸡生产性能的影响及饲料制粒前后的酶活损失率.试验结果显示:与基础日粮对比,在降磷酸氢钙日粮中添加酶的各组(2号酶除外)均差异不显著,其中微颗粒耐高温植酸酶...  相似文献   

3.
试验将含有制粒专用植酸酶制剂的日粮样本在4种温度条件下进行制粒.制粒后的饲料应用植酸酶国标法进行酶活测定,结果表明:制粒专用植酸酶在调制温度70℃左右、蒸汽压力不高的情况下酶活基本未丧失,性能比较理想:当制粒温度达到80℃以上时,酶活明显降低,但总体保持在500U/kg以上.制粒用植酸酶仍具有较好的耐热性能。经过动物饲养试验表明.肉鸡和育肥猪饲养对照组和处理组之间的平均日增重和料肉比差异都不显著(p〉0.01),这说明在添加制粒专用植酸酶后.对磷酸氢钙的量进行调整并不会影响肉鸡和育肥猪的生长性能.且同样能达到普通植酸酶在粉状饲料中的应用效果。  相似文献   

4.
试验评定了3种植酸酶产品的制粒稳定性,并通过动物试验评价了其在肉仔鸡日粮中的生物学活性。1日龄AA肉仔鸡770只,随机分为11个处理,分别采食添加不同剂量植酸酶(500、1 0002、000 U/kg)的低磷日粮。结果表明,产品A植酸酶的热稳定性明显优于产品B和产品C。在90℃和95℃制粒,产品A的存留率分别为96.3%和90.7%;产品B和C的存留率分别为26.4%、24.2%和12.6%、14.2%。采食低磷负对照日粮的肉仔鸡生长性能显著低于正对照日粮组(P<0.05)。在低磷日粮中添加植酸酶显著提高了肉仔鸡生长性能(P<0.05);肉仔鸡的生产性能随植酸酶的添加量增加而提高,植酸酶产品A趋势明显,添加量由500 U/kg提高到1 000 U/kg和2 000 U/kg,肉仔鸡体增重分别提高3.7%和6.1%,料重比降低3.5%和5.0%。根据配方中植酸磷的含量,植酸酶的添加量可由传统的500 U/kg提高到1 000 U/kg及以上。  相似文献   

5.
试验采用湿热法,并用水浴和烘箱2种加热方式,模拟在制粒过程中,温度变化对植酸酶酶活损失的变化情况的影响.从市场上收集到A、B、C、D和E5种耐高温植酸酶产品,分别经85℃烘箱处理和85℃水浴处理后,发现烘箱处理组酶A和B活性损失率显著低于水浴处理组,酶D活性损失率显著小于水浴处理组;酶C和E组间活性损失率差异不显著.5种植酸酶分别经85、90和95℃水浴处理后,植酸酶A的活性损失率分别为50.39%、65.64%和71.15%;植酸酶B的活性损失率分别为47.66%、69.90%和73.65%;植酸酶C的活性损失率分别为2.96%和15.46%和29.83%;植酸酶D的活性损失率分别为4.68%、40.45%和47.18%,植酸酶E的活性损失率分别为28.29%、69.11%和71.89%.试验结果表明植酸酶C具有最好的耐热性;采用水浴加热方式的湿热法更适用于试验.  相似文献   

6.
选用720羽1日龄白羽肉鸡.随机分为6个处理组:基础日粮组、减少日粮中磷酸氢钙6妇分别添加3种(1、2、3号)普通植酸酶和2种(4、5号)耐高温植酸酶.研究耐高温植酸酶对肉鸡生产性能的影响及饲料制粒前后的酶活损失率。结果显示:与基础日粮组对比,在降磷酸氢钙日粮中添加酶的各组(2号酶除外)差异均不显著.其中微颗粒耐高温植酸酶有降低料肉比的趋势.且与普通植酸酶2号酶有极显著差异(P〈0.01);加酶饲料制粒前后的酶活.普通植酸酶的损失率均大于20%.而耐高温植酸酶的损失率均小于10%。  相似文献   

7.
为确认经基因工程改造以酵母发酵生产的植酸酶的耐热性及其在肉猪饲粮中的应用效果,本试验结合颗粒饲料生产实际条件检测植酸酶样的耐热性,并以仔猪和生长猪为对象开展饲养试验.以玉米725.00 kg、豆粕203.24 kg、统糠11.26 kg、次粉15.00kg、大豆油15.00 kg和植酸酶30.50kg(5000 U/g)组成混合料,经调质温度为85℃和调质时间为30 s的生产线制粒,分别抽取调质前、调质后和制粒后等3个处理阶段各5个点样,测定各样的植酸酶活量,分别计算出植酸酶在调质前、调质后和制粒后的酶活回收率(%).饲养试验一:90头杜长大仔猪(9.86±0.09)kg随机分为3个处理,每个处理3个重复,每个重复10头;3组分别饲喂3种等蛋白质等能量等钙磷比的玉米-豆粕型试验饲粮(20.0%、13.39 MJ/kg和1.26),为期4周;正对照饲粮含钙0.82%和磷0.65%,负对照饲粮含钙0.62%和磷0.49%,植酸酶饲粮为在负对照饲粮基础上添加植酸酶的饲粮(500 U/kg).饲养试验二:60头杜长大生长猪(22.45±0.67)kg随机分为2个处理,每个处理3个重复,每个重复10头;2组分别饲喂2种等蛋白质等能量等钙磷比的生长猪试验饲粮(17.5%、13.00 MJ/kg和1.0),为期4周;对照饲粮含钙0.66%和磷0.67%,植酸酶饲粮含钙0.56%、磷0.56%和植酸酶(500 U/kg).试验结果表明:(1)调质前、调质后和颗粒产品样的酶活回收率分别为104.8%、73.2%和68.2%(P<0.05);(2)饲养试验一中的植酸酶组仔猪生产性能与正对照组的差异不显著(P>0.05),但负对照的增重和耗料增重比分别显著低和高于正对照的(P<0.05);(3)饲养试验二中的植酸酶组生长猪的耗料量较对照组的降低了9%,耗料增重比降低了11%(P<0.05).增重提高了2%.此酶样经颗粒料生产全程工序后仍具68.2%的存酶活,具较好的耐热性;在低磷饲粮中应用可提高饲料转化率,因而提高仔猪及生长猪的增重,并降低饲料成本.  相似文献   

8.
植酸酶包埋后酶活和热稳定性的变化规律研究   总被引:2,自引:0,他引:2  
为了了解植酸酶在包埋状态下酶活及酶性的变化,分别对酶的释放情况和热稳定性进行了研究。结果表明,随着时间的延长,包埋酶释放出的酶活逐渐上升(P<0.01),60min时达到最大值;而未包埋酶释放出的酶活逐渐下降(P<0.01),60min时达到最小值。包埋酶和未包埋酶在30、40、50、60、70、80、90和100℃的条件下,随着温度的升高,残留的植酸酶活力下降(P<0.01)。对于包埋酶,当温度升高到70℃时,植酸酶相对酶活仍保持在93%(P>0.05);当温度升高到80℃时,植酸酶的相对酶活才明显下降(P<0.01),不过在100℃时,仍能保持67%的酶活(P<0.01)。对于未包埋酶,当温度升高到60℃时,植酸酶相对酶活明显下降(P<0.01);当温度升高到100℃时,植酸酶相对酶活仅有23%(P<0.01)。通过在统一温度条件下,对包埋酶和未包埋酶处理组的相对酶活的对比发现,在50℃以下时,二者差异不显著,当温度超过60℃时,包埋酶的相对酶活极显著高于未包埋酶。  相似文献   

9.
植酸酶对于有效释放饲料中的植酸磷有着重要的意义,目前国内外对植酸酶的研究已经从基础的理论研究向应用研究发展,从天然获取向基因工程发展,通过对目前市面上销售的6个品牌的耐高温植酸酶进行实验室湿热试验和饲料制粒试验,研究这6个经过高温处理后植酸酶的湿热酶活存留率和制粒酶活存留率。结果表明:国外品牌F耐温效果最优,国内品牌A可与之媲美,85℃饲料制粒仍可保留85.92%,显著高于除国外品牌F的其他各品牌植酸酶;另外,实验室湿热法对于饲料实际制粒耐热结果具有一定指导意义。  相似文献   

10.
本研究旨在探讨低磷饲粮中添加新型耐热植酸酶对断奶仔猪生长性能与小肠黏膜形态结构的影响.试验选用256头遗传背景相同、初始体重为(8.37±0.97) kg的30日龄断奶仔猪,按照完全随机区组的方法分为4个处理,每个处理设4个重复,每个重复16头仔猪.4个处理分别饲喂基础饲粮、低磷饲粮、低磷饲粮+500 U/kg新型耐热植酸酶及低磷饲粮+1 000 U/kg新型耐热植酸酶.试验期为30 d.结果表明:1)2个新型耐热植酸酶添加组相比较低磷饲粮组可提高仔猪平均日增重并降低料重比,但差异不显著(P>0.05);2)1 000 U/kg新型耐热植酸酶添加组空肠和回肠绒毛高度、500 U/kg新型耐热植酸酶添加组回肠绒毛高度均显著高于低磷饲粮组(P<0.05),1 000 U/kg新型耐热植酸酶添加组十二指肠隐窝深度显著低于基础饲粮组和低磷饲粮组(P<0.05),1 000 U/kg新型耐热植酸酶添加组十二指肠绒毛高度与隐窝深度比值显著高于低磷饲粮组(P<0.05).由此可知,断奶仔猪饲粮中添加新型耐热植酸酶用以减少无机磷的添加,能达到与基础饲粮组仔猪生长性能相近的效果,且对小肠黏膜形态结构有促进作用;添加新型耐热型植酸酶1 000 U/kg优于添加500 U/kg的效果.  相似文献   

11.
为了了解植酸酶在包埋状态下酶活及酶性的变化,分别对酶的释放情况和热稳定性进行了研究.结果表明,随着时间的延长,包埋酶释放出的酶活逐渐上升(P<0.01),60min时达到最大值;而未包埋酶释放出的酶活逐渐下降(P<0.01),60 min时达到最小值.包埋酶和未包埋酶在30、40、50、60、70、80、90和100℃的条件下,随着温度的升高,残留的植酸酶活力下降(P<0.01).对于包埋酶,当温度升高到70℃时,植酸酶相对酶活仍保持在93%(P>0.05);当温度升高到80℃时,植酸酶的相对酶活才明显下降(P<0.01),不过在100℃时,仍能保持67%的酶活(P<0.01).对于未包埋酶,当温度升高到60℃时,植酸酶相对酶活明显下降(P<0.01);当温度升高到100℃时,植酸酶相对酶活仅有23%(P<0.01).通过在统一温度条件下,对包埋酶和未包埋酶处理组的相对酶活的对比发现,在50℃以下时,二者差异不显著,当温度超过60℃时,包埋酶的相对酶活极显著高于未包埋酶.  相似文献   

12.
本试验通过模拟饲料制粒过程及动物胃环境,对不同来源的植酸酶在经过高温和酸处理后酶活变化情况进行了对比分析,为植酸酶的实际应用提供理论依据。(方法)搜集到11种市售的植酸酶产品,编号为1~11采用湿热法,温度分别设置为75℃、80℃和85℃,处理时间为2.5min,p H处理值设定为4.0、3.0和2.5,处理时间为2h。结果表明,不同来源的植酸酶耐温性和耐酸性存在很大差异,从耐温性看,温度在75℃~80℃时,1号样相对酶活最高,而继续升至85℃时,11号样稳定性最好,10号样次之;从耐酸性看,p H值从4.0降至3.0时,10号样相对酶活最高,11号样次之,其他稳定性均比较差。因此,综合考虑,在模拟饲料制粒条件和动物胃环境下评定酶的作用效果,以10、11号样耐受性最好,4、5号样酶活稳定性最差。  相似文献   

13.
本试验选取0、500、1000、1500 U/kg和2000 U/kg 5种不同浓度梯度的植酸酶,分别对豆粕、玉米蛋白粉、菜籽粕、棉籽粕和小麦粉进行植酸酶预处理,研究不同浓度植酸酶的酶效率和最佳处理浓度。试验结果表明:随着植酸酶浓度上升,植物性原料中的植酸磷含量逐渐减少,有效磷含量逐渐增大,酶效率逐渐提高。在本试验条件下,1464 U/kg是最为经济有效的植酸酶处理浓度,酶效率约为91.12%。  相似文献   

14.
选用960羽樱桃谷肉鸭,随机分成4组,每组6个重复,分别饲喂玉米豆粕型基础日粮和用100g/t植酸酶替代6kg磷酸氢钙的试验日粮,以研究植酸酶对樱桃谷鸭生产性能、胫骨发育和饲料养分利用率的影响。同时比较普通植酸酶和耐高温植酸酶在饲料加工后酶活损失和对试验指标的影响。试验结果表明,在相对低的无机磷日粮中,添加植酸酶可使鸭生产性能改善,养分利用率提高;胫骨中灰分、钙磷的沉积率提高。但是植酸酶是否耐高温对试验指标影响很大,耐高温植酸酶制粒后酶活损失低于10%,饲养效果较好。综合考虑本试验结果可得出,樱桃谷肉鸭饲料中可用100g/t耐高温植酸酶替代6kg的磷酸氢钙。  相似文献   

15.
试验在低磷日粮中分别添加普通植酸酶与耐高温植酸酶,研究两种植酸酶对肉仔鸡营养物质表观消化率及胫骨灰分含量的影响。选用4 800只1日龄AA肉仔鸡,随机分为6个处理,每个处理设5个重复。试验分2期进行,1~3周和4~6周。对照组饲喂基础日粮,处理1组降低基础日粮的磷水平,处理2组与处理3组分别在其基础上添加普通植酸酶500、2 000 U/kg,处理4组和处理5组分别添加耐高温植酸酶250、500 U/kg。结果表明:①当降低基础日粮中磷添加水平时,降低了磷的表观消化率;在此基础上添加500~2 000 U/kg普通植酸酶或250~500 U/kg耐热植酸酶,显著提高了磷的表观消化率,且超过了对照组,其中以250~500 U/kg耐热植酸酶与2 000 U/kg普通植酸酶效果理想。降低磷添加水平或添加不同来源植酸酶对粗蛋白质和钙的表观消化率基本没有影响;②当降低基础日粮中磷添加水平时,显著降低了胫骨灰分和磷的含量(P<0.05),同时钙含量呈降低趋势(P>0.05);在此基础上添加500~2 000 U/kg普通植酸酶或250~500 U/kg耐热植酸酶,胫骨灰分和钙、磷的含量恢复到或超出对照组水平。  相似文献   

16.
通过对高热稳定性、高耐酸性植酸酶生产价值的验证,研究了不同梯度日粮磷水平及磷限制日粮中添加不同浓度植酸酶对肉用仔鸡生长性能的影响。选择1日龄的AA白羽肉鸡(♂)800只,随机分为8个处理组,每组10个重复,每个重复10只鸡。处理组1为日粮正常组,基础日粮中有效磷的含量为0.45%;处理组2、3和4为日粮有效磷限制组,分别对日粮中有效磷的含量限制为0.35%,0.3%和0.25%。在处理组4的日粮基础上,分别对处理组5、6和7添加250U/kg,500U/kg和1000U/kg三个浓度梯次的植酸酶A,对处理组8添加100U/kg浓度的植酸酶B。试验期18d。结果表明,日粮有效磷限制组(处理组2、3和4)的肉用仔鸡18日体重、平均日采食量和料肉比等指标全都低于日粮正常组(处理组1),差异显著(P0.05);根据日粮中不同浓度植酸酶的添加,18日龄内,肉用仔鸡的平均体重(R2=0.6241)和料肉比(R2=0.9383)均呈现线性增长,同时,植酸酶B添加组(处理组8)的日采食量和日增重均优于植酸酶A添加组(处理组5、6和7)(P0.05)。因此,植酸酶可以有效的缓解日粮中有效磷不足对肉用仔鸡生长性能的影响,植酸酶B饲用效果优于植酸酶A。  相似文献   

17.
选用960羽樱桃谷肉鸭,随机分成4组,每组6个重复,分别饲喂玉米-豆粕型基础日粮和用100g/t植酸酶替代6kg磷酸氢钙的试验日粮,以研究植酸酶对樱桃谷鸭生产性能、胫骨发育和饲料养分利用率的影响。同时比较普通植酸酶和耐高温植酸酶在饲料加工后酶活损失和对试验指标的影响。试验结果表明,在相对低的无机磷日粮中,添加植酸酶可使鸭生产性能改善,养分利用率提高;胫骨中灰分、钙磷的沉积率提高。但是植酸酶是否耐高温对试验指标影响很大,耐高温植酸酶制粒后酶活损失低于10%,饲养效果较好。综合考虑本试验结果可得出,樱桃谷肉鸭饲料中可用100g/t耐高温植酸酶替代6kg的磷酸氢钙。  相似文献   

18.
研究采用烘箱干热法,对比包被粪肠球菌与普通粪肠球菌,在不同温度(70、85及100℃)下,分别处理不同时间(0、5、10、15、30及60 min)后的存活率,发现包被后的粪肠球菌存活率分别上升13.6%、13.7%和17.0%,可见微囊包被技术的确可提升粪肠球菌的耐高温性能。对比饲料制粒过程中不同制粒温度(65及75℃)与饲料中的包被粪肠球菌烘箱干热处理后的存活率发现:制粒温度为65℃时粪肠球菌存活率相当于饲料在烘箱75℃下热处理28 min,85℃热处理21 min或100℃热处理13 min;制粒温度为75℃时粪肠球菌存活率相当于饲料在烘箱75℃下热处理53 min,85℃热处理41 min或100℃热处理28 min;因此,将饲料中包被粪肠球菌添加至烘箱干热处理试验可快速对制粒过程中粪肠球菌的耐受性进行评估。  相似文献   

19.
高俊杰  车向荣 《饲料工业》2006,27(24):21-23
试验通过测定断奶仔猪的生长性能,研究断奶仔猪日粮中添加微生物植酸酶和有机酸的效果。试验采用完全随机设计,将72头体重相近、遗传基础相似的35日龄断奶的杜×长×大三元杂交仔猪分为4组,每组3个重复,每个重复6头猪。试验日粮在相同钙水平基础上,分别设为:玉米—豆粕型基础日粮(正对照组)、基础日粮-50%磷酸氢钙(负对照组)、基础日粮+植酸酶(500U/kg)-50%磷酸氢钙(处理1组)、基础日粮+植酸酶(500U/kg)+有机酸(0.35%柠檬酸)-50%磷酸氢钙(处理2组)。试验结果表明:①与负对照组相比,处理1组和处理2组平均日增重(ADG)和增重与饲料比(G/F)显著提高(P<0.05),处理1组和处理2组之间无显著差异(P>0.05),但ADG和G/F均以处理2组较高;各处理组间仔猪的平均日采食量(ADFI)无显著差异(P>0.05)。②添加植酸酶或植酸酶和有机酸不影响粗蛋白(CP)的表观消化率和血清尿素氮(SUN)浓度(P>0.05)。总之,仔猪断奶阶段,在玉米—豆粕型基础日粮中添加植酸酶或植酸酶和有机酸代替部分磷酸氢钙,仔猪的生长性能与含正常无机磷水平的正对照组相比无显著差异,500U/kg植酸酶或500U/kg植酸酶和0.35%柠檬酸足以代替仔猪日粮中50%磷酸氢钙,但植酸酶和有机酸对于提高仔猪生长性能不存在显著的协同效应。  相似文献   

20.
植酸酶和嗜酸乳杆菌是重要的饲料添加剂,为获得产植酸酶的嗜酸乳杆菌菌株,克隆了大肠杆菌植酸酶基因,构建表达载体并转化嗜酸乳杆菌,对重组嗜酸乳杆菌进行发酵产酶并测定所产酶液的酶学性质,进一步研究重组嗜酸乳杆菌的耐酸性及植酸酶液的抗蛋白酶活性。结果表明:重组嗜酸乳杆菌发酵24 h植酸酶活性为984 U/mL,植酸酶的最适催化pH为4.5,最适催化温度为60℃。重组嗜酸乳杆菌在pH 2.0~4.5有一定的耐酸性,在pH 2.0条件下2 h的存活率为76.4%。植酸酶液用胃蛋白酶处理160 min后植酸酶液剩余85%的相对酶活,用胰蛋白酶处理160 min后剩余29%的相对酶活。上述研究结果为重组嗜酸乳杆菌后续应用研究提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号