首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
拖拉机动量飞轮主动防侧翻控制与模型试验研究   总被引:1,自引:0,他引:1  
针对拖拉机侧翻致死致伤事故仍时有发生的问题,基于旋转刚体加速时的反向施矩原理,以反作用动量飞轮为执行元件,提出了从主动安全角度解决拖拉机侧翻问题的研究方法。通过构建拖拉机动力学系统数学模型,解析了整机侧翻行为的动态演变机理。为保证拖拉机主体结构的完整性,将动量飞轮置于拖拉机前部,取代传统静态配重的同时可主动提供防侧翻力矩。应用Matlab/Simulink软件,对反作用飞轮的回稳过程进行了基于PID控制的有效性仿真分析,同时设计并搭建了比例模型试验平台,对主动施矩飞轮的回稳控制效果进行了试验验证。结果表明,装备飞轮的拖拉机与无控制组对比,在一次试验中可多次实现整机的防侧翻控制,使整机防侧翻性能得到明显改善,且不同行驶工况下的试验数据与仿真结果的相关性较强,充分验证了本文拖拉机侧翻动力学模型的有效性。  相似文献   

2.
在山地、丘陵等复杂作业工况下,农机失稳倾翻的事故频频发生。为了减少侧翻事故发生并提供侧翻预警,针对高地隙田园管理机,建立了整机三自由度侧倾动力学模型和基于动态横向载荷转移率(Lateral-load Transfer Ratio,LTR)的侧翻评价指标;选择鱼钩转向典型工况进行Simulink仿真,基于Labview开发侧翻预警系统并进行了实车试验。试验结果表明:侧倾动力学模型及其评价指标能够较好地实现侧翻预警,实车试验与仿真结果契合度较高;开发的侧翻预警系统具有较好的实时性和准确性,为高地隙田园管理机应用于现实复杂工况的行驶、作业提供了安全保障。  相似文献   

3.
拖拉机侧翻事故是农业生产过程中最严峻的安全问题之一,现有主、被动安全手段均未能从根本上解决该问题。在前期利用飞轮—电机加速旋转时产生的反向力矩进行姿态调节实现失稳态拖拉机姿态回稳的基础上,为进一步避免姿控飞轮卸载过程造成能量浪费,本文基于1∶16比例模型试验平台设计搭建了飞轮卸载能量回收电路,并通过模型试验对其回收效果进行了验证。试验结果表明,当模型拖拉机以0.2m/s速度行驶于路面不平度较高的G级、H级路面出现侧翻趋势并实现姿态回稳时,整机侧向姿态角降至10°后能量回收系统可介入工作,此时回收电压出现峰值0.97V(H-B轨迹),随后其数值变化趋势与姿控飞轮转速的降低趋势相似,直至飞轮卸载完成后回收电压归零。试验过程中,飞轮—电机系统在对不同的整机侧翻趋势做出响应时,能量回收系统完成的电量回收不同,但均完成了对飞轮卸载能量的部分回收,提高了整机能源的利用效率。  相似文献   

4.
为提高车辆在危险工况下的防侧翻性能,本文利用差动制动及主动转向两种控制方式对车辆进行防侧翻最优控制研究。在系统动力学模型和相关轮胎模型的基础上,利用模糊控制方法设计控制系统的上层控制器,利用防止车辆侧翻所需的矫正横摆力矩,采用主动转向和差动制动协调控制从而得到最佳矫正横摆力矩的方法来控制车辆的侧翻,并进行了仿真分析。结果表明,运用这两种控制方式对车辆进行最优控制时,两种控制方式产生的矫正横摆力矩达到最优,有效地降低了车辆在弯道路段的侧向加速度,提高整车的防侧翻性能,能够快速准确地使车辆恢复稳定。利用Matlab对控制系统进行了仿真与分析,仿真结果验证了所提出控制方法及控制策略的有效性,与未采用防侧翻控制系统的仿真结果相比,整车的主动安全性得到提高。  相似文献   

5.
针对农用车辆自动导航作业中常见的侧翻事故,基于轮式车辆侧翻力学模型,设计了一种实时性强且可有效降低车辆侧翻事故发生率的车辆侧翻预警系统。系统基于LabVIEW2015平台进行开发,通过获取车速、前轮转角和侧倾角数据,实时判断车辆的侧翻危险程度,并根据不同的侧向加速度阈值进行三级侧翻预警。实车试验结果表明:系统运行稳定且预警效果良好,平均预警误差率为7.14%,可以满足预警系统精度要求。  相似文献   

6.
建立了双扩展卡尔曼滤波(DEKF)估计器,经过双移线工况的仿真验证,确定估计器的准确性,可用于控制系统的研究;应用双扩展卡尔曼滤波方法估计车辆的状态及参数,估算出反映侧翻的危险时刻。控制采用线性二次型LQR最优方法求解纠正车辆姿态所需要的最优补偿横摆力矩,然后基于差动制动的控制策略,把横摆力矩分配到某个唯一车轮上,设计PD控制器对滑移率进行控制。最终在Trucksim-Simulink联合仿真中证实,该系统能及时控制住车辆,避免车辆侧翻。  相似文献   

7.
为了提高汽车的抗侧倾性能以及驾驶员的舒适性和安全性,设计了主动横向稳定杆控制器。针对汽车整车系统结构复杂,模型参数不确定性,设计了模糊滑模控制控制器,从而实现对理想侧倾角度跟踪,同时调整前后轴主动抗侧倾力矩分配,提高车辆的操稳性,并进行不同工况的仿真试验。仿真结果表明,所设计的主动横向稳定杆控制方式能够有效抑制抖振现象,具有较好的鲁棒性,实现对车身侧倾角理想跟踪控制并改善车辆的操稳性。  相似文献   

8.
基于滑模观测和模糊推理的车辆侧翻实时预警技术   总被引:2,自引:1,他引:1  
提出一种实时的车辆侧倾状态观测器和侧翻预警算法.建立一种考虑轮胎力非线性特性的扩展3自由度车辆模型,并使用非线性最小二乘法拟合轮胎模型的参数.在车辆模型的基础上设计了基于超螺旋理论的滑模观测器,实时观测车辆的侧倾状态.侧翻预警算法依据当前车辆状态参数及变化趋势,通过构造模糊推理系统计算车辆侧翻指数,综合评价车辆侧翻的危险程度.使用车辆动力学仿真软件veDYNA进行的虚拟道路试验验证了观测器的观测精度和预警算法的预警效果.  相似文献   

9.
文章针对铰接矿用车辆易发生侧倾的问题,提出了抗侧翻控制系统.应用模糊控制,建立了多级阻尼调节的抗侧翻控制规则与算法.同时为兼顾车辆正常行驶的平顺性控制,设计了协调控制算法.经过实车试验测试,证明了所设计的抗侧翻控制算法是有效的.  相似文献   

10.
轮胎侧偏特性识别是汽车动力学稳定性控制的基础,而极限工况下因侧倾转向和变形转向的影响,基于动力学模型的轮胎侧偏角估计方法精度变差。提出一种基于直接视觉测量转向轮转角和车身姿态的轮胎侧偏角测试方法,为极限工况下转向轮转角和轮胎侧偏角观测模型研究提供技术手段。首先分析了侧偏角测试原理,基于高精度定位定向差分GPS和图像实时处理器CVS 1456等构建了实车试验系统。在对试验车转向系统传动比进行标定的基础上,原地转向和小侧向加速度行驶试验表明:基于图像获取转向轮转角与基于转向盘转角方法一致性好。圆周加减速行驶试验表明,在侧向加速度约0.8 g时,汽车达到极限工况,基于图像方式获取的转向轮转角曲线体现了侧倾转向和变形转向的影响,试验车具有不足转向特性。实车试验表明所提出方法是有效、可行的。  相似文献   

11.
针对山地履带拖拉机(简称山地拖拉机)等高线作业时,车身调平和农具仿形作业不同的姿态调整需求,在建立车身及农具运动学模型的基础之上,构建了整个系统的控制策略,设计了车身与农具姿态协同控制系统,其中,对车身和农具的控制分别采用PID算法和双闭环模糊PID算法.基于Simulink对控制算法进行了仿真分析,结果表明:采用PI...  相似文献   

12.
针对部分地区横向斜坡农田地形导致路径跟踪控制算法精度下降的问题,提出了一种包含路面坡度扰动的动力学模型与跟踪误差模型结合的轮式拖拉机行驶动态过程的控制模型,并基于此模型通过线性模型预测控制方法得到控制律,由于预测模型包含了坡度的影响,使得反馈校正能够提前补偿,有效改善了农机在坡地上的路径跟踪性能。考虑到农机在不同行驶阶段对于误差和稳定程度需求的不同,提出了自适应的模型预测方法,令Q、R值随动变化以应对不同的需求(随动变化指的是两者相对大小的变化而非绝对数值)。进行了预测区间与控制区间选择的试验,而后基于简单运动学模型的模型预测控制进行了有无自适应Q、R的对比试验,最后分别在固定斜坡角的横向斜坡路面上和在斜坡角连续变化的横向斜坡路面上进行了本文方法与基于简单运动学的模型预测控制方法对比试验。试验结果表明:自适应能显著提升控制效果;本文方法在横向斜坡路面上的路径跟踪表现明显优于基于简单运动学模型的方法,此外稳态时的稳定程度也有较大的提升。  相似文献   

13.
为进一步提升农业机器人底盘田间转向效率,设计了一种基于自抗扰控制的农业机器人底盘双重转向运动控制系统。根据苹果种植农艺需求和行驶环境,确定了底盘组成和主要技术参数,开展了硬件系统搭建和部件选型。建立了底盘4自由度动力学模型,明确了衡量转向效率的状态空间方程。提出了一种基于自抗扰控制的双重转向控制策略,建立了Simulink动力学仿真模型,并进行了转向仿真模拟。仿真结果表明,自抗扰双重转向运动控制模型横摆角速度为0.241rad/s,转弯半径为1.96m,扰动恢复时间为1.04s,相较于传统PID双重转向控制模型,该模型横摆角速度更大、转弯半径更小、恢复稳定状态更快。田间试验结果表明,底盘平均横向偏移距离为18.5cm,滑移率为4.84%,大半径转弯测试中双重转向控制底盘的转弯半径平均值相比阿克曼转向控制分别减少0.60、0.57m,平均转向时间减少4.70、3.41s。小半径转弯测试中双重转向控制底盘的转弯半径平均值比阿克曼转向控制分别减少0.52、0.49m,平均转向时间减少10.27、8.22s。  相似文献   

14.
四轮转向车辆后轮转角与横摆力矩联合模糊控制   总被引:2,自引:1,他引:1  
为提高车辆在极限工况下的稳定性,充分考虑悬架、转向系统以及轮胎等部件的非线性,运用多体动力学仿真分析软件ADAMS/Car建立了四轮转向车辆的虚拟样机模型.确定了质心侧偏角和横摆角速度具有理想输出响应的控制目标.针对车辆的非线性,提出了后轮转角与横摆力矩联合控制的模糊控制策略,并设计了对应的非线性模糊控制系统.最后应用ADAMS/Car和Matlab/Simulink联合仿真技术,对控制系统的性能进行了仿真验证.仿真结果表明:后轮转角与横摆力矩联合模糊控制可有效防止车辆在极限转向工况下发生侧滑失稳.  相似文献   

15.
为满足轮式拖拉机总装线运行链速的调整以及总装后轮式拖拉机的接车下线需要,介绍一种带接车下线设备的轮式拖拉机总装线电控系统,不仅可依据需要,对其"设备"的接车台面实施"平升"、"平降"并辅之"倾转"操控,满足总装后多机型轮式拖拉机的自动随线上台和顺坡下滑下线的需要,而且还可随时依据需要,调控总装线运行链速,满足装配节拍的调整需要,且电控方法简单可行,安全可靠,具有很好的使用价值。  相似文献   

16.
针对重型半挂车侧翻稳定性问题,建立了重型半挂车六轴模型,同时为了描述车辆的非线性特性,在车辆模型中加入非线性轮胎模型,并通过商业软件TruckSim进行模型验证.利用LQR最优控制技术,研究基于牵引车横摆角速度、侧向加速度及车辆铰接角的重型半挂车多目标稳定性控制策略,并在TruckSim和Matlab/Simulink联合仿真环境下进行算法仿真验证.仿真结果表明:提出的重型半挂车多目标稳定性控制策略可以有效提高车辆的行驶稳定性,从而避免危险事故发生.  相似文献   

17.
针对丘陵山地拖拉机坡地适应性差,易翻倾,通过性差等问题,设计一种具有自动调平机构的504型丘陵山地拖拉机。整机采用机械传动,四驱轮式行走系统,两侧独立传动转向系统,平行四杆自动调平机构,可实现拖拉机姿态自动仿形调平。基于SolidWorks对拖拉机进行整机三维建模,运用ADAMS软件对虚拟样机进行侧倾稳定性动态仿真分析。结果表明: 自动调平机构调平动作范围732 mm,可在25°的坡地上保证车身横向水平。上坡极限翻倾角及下坡极限翻倾角均为45°,上坡纵向滑移角为33.69°,下坡纵向滑移角为16°,前后驱动轮越障高度为214 mm。调平状态下车身的最大侧倾角为37.5°,与理论计算35.93°非常接近。该机前后驱动桥均可进行独立调平,保证机身始终处于水平姿态,能够满足丘陵山地生产作业要求。  相似文献   

18.
履带式拖拉机坡道行驶稳定性分析   总被引:3,自引:0,他引:3  
根据履带式拖拉机的运动特点,运用数力学理论和方法,推导了履带式拖拉机在坡道上行驶时,拖拉机重心位置、履带接地长度、宽度、轨距、坡度角等参数之间的相互关系,在此基础上,分析了履带式拖拉机坡道行驶稳定性随这些参数变化的规律,指出了导致行驶不稳定的因素,为合理配置履带式拖拉机的结构参数提供了参考依据。  相似文献   

19.
丘陵山地拖拉机姿态主动调整系统设计与实验   总被引:3,自引:0,他引:3  
为保证拖拉机在丘陵山地的安全作业,并提高作业效率及乘坐舒适性,设计了基于双闭环PID算法的丘陵山地拖拉机姿态主动调整系统。首先,根据丘陵山地特定作业需求设计了姿态主动调整系统,包括姿态调整机构、液压驱动系统和控制系统;然后,建立了系统动力学模型,通过数值分析验证了该自动调平控制算法的有效性;最后,在山东五征集团生产的拖拉机上安装此系统,并进行了实验验证。结果表明:所设计的姿态主动调整系统在±10°的坡地上调平时间为7. 5 s,最大调平误差小于0. 5°,左右摆动机构摆角绝对值的差在±1°以内,能有效满足丘陵山地作业需求。同时,该拖拉机在高低起伏较大的坡地上以1挡速度(1. 98 km/h)行驶时,车身倾斜角可控制在±3°范围内,左右摆动机构摆角绝对值差在±5°范围内。所设计的姿态主动调整系统能适应恶劣作业环境的作业需求。  相似文献   

20.
针对电液耦合转向方案转向特性尚不明晰、转向数据采集和记录困难等问题,提出一种硬件在环拖拉机电液耦合转向试验平台设计方案。平台参数设计过程主要考虑功率损耗,为了满足电液耦合转向系统的性能要求,进行精度设计与量程设计。通过总体参数设计,得到电动助力、液压助力和阻力加载系统的参数计算模型,并基于AMESim建立电液耦合转向系统的控制与机械模型仿真进行了参数优化。通过基于dSPACE以及PXI的硬件在环控制方案,进行了各类转向工况试验验证,验证结果表明:阻力加载模拟系统能根据不同的地面条件、行驶工况等参数实现动态加载,响应速度和控制精度均能实现田间阻力模拟要求;电液助力转向系统能够产生较好的平滑助力,具有良好的转向路感;控制系统能与各传感器硬件协同配合,使拖拉机电液耦合转向试验平台具有良好的响应特性,能够真实还原拖拉机转向过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号