首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
介绍了电动客车电动助力转向系统的基本工作原理;设计了电动客车电动助力转向系统硬件在环仿真试验平台。其转向盘的驱动有手动驾驶和自动驾驶两种模式;转向阻力的模拟由基于PLC控制的液压加载系统实现。该试验平台适合于电动助力转向系统的开发、系统试验及性能评价。  相似文献   

2.
三点悬挂系统是拖拉机关键工作系统之一。由于田间作业工况的复杂多变,拖拉机三点悬挂液压系统承受较大的随机载荷,容易发生零部件破坏与液压故障等问题,直接影响拖拉机安全及作业效率。基于以上问题,研发了拖拉机三点悬挂电液加载系统,并基于NI Compact-RIO开发了拖拉机加载平台测控仪与上位机测控软件,实现了信号采集与加载控制。利用ARMAX模型进行系统辨识,得到电液系统模型,并与MatLab传递函数辨识箱比较,平均绝对误差降低33.90%,均方误差降低87.36%,均方根误差降低64.45%;基于PID控制方法,上位机以20Hz加载频率将阶梯信号、正弦信号、田间三点悬挂牵引力载荷应用于加载系统进行复现,效果完全可以满足试验台的控制加载要求。试验结果表明:基于ARMAX模型的系统辨识及基于PID的控制方法结合三点悬挂电液加载系统,可将田间三点悬挂牵引力载荷加载复现,为基于田间动态载荷加载的拖拉机三点悬挂零部件与系统可靠性试验提供了平台和方法支撑。  相似文献   

3.
为了解决电动助力转向系统试验台架不同工况下负载力的施加问题,对基于整车动力学的试验平台负载力进行研究。利用MATLAB建立简化的原地转向轮胎模型、Fiala-桥石轮胎模型和考虑侧倾的三自由度车辆模型,对多种工况(原地转向及行驶转向)下负载力进行分析,并进行了实车试验验证。仿真与试验结果表明,所得到的负载力与试验结果基本一致,实现试验台架根据不同工况施加负载力的功能,相比现有的以弹簧作为负载力施加的EPS试验台架更能满足模拟汽车各种工况下转向阻力的要求。  相似文献   

4.
纯电动拖拉机电驱动系统设计与试验   总被引:5,自引:0,他引:5  
根据拖拉机工作特性与传动特性要求,设计了一种基于丘陵山区耕播工况下拖拉机电驱动系统,包括电驱动传动方案、驱动电机参数匹配、传动机构及动力输出机构特征参数设计等。在搭建的电驱动系统综合性能试验台上对该系统进行外特性、传动效率、噪声及可靠性测试。试验结果表明,该电驱动系统传动效率在72%~94%之间,且在1 000 r/min以内低速工况下,能够稳定输出扭矩;在1 000~3 000 r/min之间能稳定输出功率。满足拖拉机耕播工况和运输工况下的特性要求,验证了电驱动系统设计的合理性。  相似文献   

5.
拖拉机电液助力转向系统的研究   总被引:1,自引:0,他引:1  
设计了一种用于拖拉机的电控液压自动助力转向(EHPS)系统,将方向盘阻力转矩引入到系统中,实现了转矩感应型助力特性的液压助力转向,既可保证转向轻便性,确保实时提供足够助力,又减少能量损失。基于AMESim软件建立了EHPS系统仿真模型,分析结果表明系统具有良好的控制精度和快速响应特性。  相似文献   

6.
电动拖拉机试验具有测试对象多和物理系统复杂的特点,单一试验系统不能满足电动拖拉机性能测试要求。根据电动拖拉机作业特点,通过分析其动力传动系统数学模型,确定了以电动机效率、电池组放电特性为测试变量的设计任务。采用模块化方法,设计了能源系统试验模块、动力系统试验模块和电动拖拉机综合试验系统整体方案。通过研究试验系统总体参数设计方法,得到了加载电动机、电池测试系统和直流电池模拟器等部件的参数计算模型。通过试验系统硬件选型匹配,设计了可满足90 k W以下电动拖拉机性能测试的试验系统。在该试验平台进行了电动拖拉机性能台架试验,结果表明:试验测试误差与前期仿真分析误差在10%以内,设计的综合台架试验系统对电动拖拉机部件性能测试的适用性较好,满足整机性能分析和标定的试验需求。  相似文献   

7.
电动助力转向系统全工况建模及试验验证   总被引:2,自引:0,他引:2  
为克服以往车辆电动助力转向(EPS)模型的不足,结合简化的原地转向轮胎模型和基于Doguff轮胎模型的七自由度整车模型,建立了转向系统转向及回正时的力学模型。为得到车辆的转向力矩和回正性能特性,对无助力转向全工况(原地及行驶条件下)转向操纵转矩和回正的转向盘残留转角进行仿真,试验结果表明所设计的模型可以准确描述转向操纵转矩和回正特性。进而设计了基于滑模变结构电动助力转向控制策略进行助力和回正控制,仿真和实车验证结果表明,基于该模型设计的控制策略可以有效降低驾驶员的操纵转矩和提高车辆的回正性能。  相似文献   

8.
基于DSP的拖拉机电液转向控制系统   总被引:1,自引:2,他引:1  
针对拖拉机的全液压转向系设计了基于TMS320F2812 DSP的电液转向控制系统,硬件部分包括DSP芯片及PWM电控器等接口电路,软件部分设计了带非线性补偿的PID控制算法,选用比例电磁换向阀、角位移传感器构建了试验平台,进行了算法参数确定试验和导向信号跟踪转向试验。结果表明控制系统的转向角误差小于7%,平均滞后时间为0.15s,能为自动导向提供理论基础。  相似文献   

9.
针对拖拉机的全液压转向系设计了基于TMS320F2812 DSP的电液转向控制系统,硬件部分包括DSP芯片及PWM电控器等接口电路,软件部分设计了带非线性补偿的PID控制算法,选用比例电磁换向阀、角位移传感器构建了试验平台,进行了算法参数确定试验和导向信号跟踪转向试验。结果表明控制系统的转向角误差小于7%,平均滞后时间为0.15s,能为自动导向提供理论基础。  相似文献   

10.
以电液转向机的转向特性为研究对象,结合搅拌车的典型行驶工况,从随速助力和回正性能2个方面有针对性地对搅拌车的转向手力进行调校,并对转向系统的标定程序从主观和客观试验2个方面展开评价。结果表明,电液转向系统能够极大优化司机的转向感觉,提升搅拌车辆的转向性能,具有非常重要的实用价值。  相似文献   

11.
针对丘陵山地拖拉机作业地形复杂,传统电液悬挂控制系统地形适应性差的问题,设计了一套横向姿态可调的丘陵山地拖拉机电液悬挂仿形控制系统。根据丘陵山地拖拉机仿形控制作业需求,在传统悬挂结构基础上加装一个液压驱动旋转装置,设计了一种仿形悬挂机构,基于液压多点动力输出技术设计了带有负载反馈的闭心式液压控制系统,并提出了一种基于带死区的经典PID算法的控制方法。通过对阀控非对称液压缸工作原理的分析,建立了其数学模型并推导出仿形控制系统的传递函数,运用Matlab/Simulink建立了电液悬挂仿形控制系统的动力学模型并进行了仿真分析,仿真结果表明,系统在0°~11°阶跃信号的作用下,调整时间约为0.4s,几乎无超调,系统稳定后农机具横向倾角约为11.1°,稳态误差约为0.1°,仿真结果验证了该控制算法的有效性。通过对传统拖拉机的液压悬挂装置进行改装,将原来的手柄操纵式液压悬挂装置改装成带有虚拟终端的电液悬挂控制系统,搭建了仿形控制试验台并进行了室内台架试验,试验结果表明,系统调整时间约为2.2s,几乎无超调,系统稳定后农机具横向倾角约为11.2°,稳态误差约为0.2°,在系统允许误差(0.5°)范围内,试验结果验证了所设计的丘陵山地拖拉机电液悬挂仿形控制系统调节的快速性与稳定性,满足拖拉机等高线坡地作业需求。  相似文献   

12.
拖拉机电液提升控制阀是拖拉机电液提升系统中的重要部件,主要用于控制拖拉机悬挂农具的升降。为此,分析了电液提升控制阀的工作原理,并对其进行了结构设计与数学建模。利用AMEsim软件建立了电液提升控制阀的HCD模型,并对其工作性能进行了仿真分析。仿真结果表明:所设计电液提升控制阀响应快且变化平稳,控制电流与输出流量、液压缸移动速度线性度较好,满足实际工作需要。  相似文献   

13.
韩明兴  徐琨  廖宜涛  李淼  余锴 《农业机械学报》2024,55(1):396-408,418
针对传统以液压驱动或纯电驱动的履带式农机装备功耗大、系统响应慢、电池续航短、功率扭矩输出不足等问题,本文提出了一种高效液电混动履带式行走底盘,集成了液压驱动和电驱动两套独立动力系统,双液压马达及双伺服电机的四轮驱动结构,可实现整机大扭矩输出,利于整机轻量化设计;通过伺服电机速度及力闭环控制,适应匹配底盘外负载的变化,可显著改善闭式液压驱动系统的动态输出特性,提高整机动态控制性能并降低工作能耗。基于AMESim与Matlab建立了电液混动系统的联合仿真模型,对比分析整机在平地直线行驶、山地爬坡、原地转向等不同工况的行驶动态性能,试验结果表明所设计的液电混合驱动履带底盘最大行驶速度可达1.1m/s,原地转弯时间最快为2.4s,最小转弯直径为150cm,可实现丘陵山地复杂地形转弯及调头;履带底盘直线行驶偏移率不大于3.3%;在相同工况下与液压驱动相比,液电混合动模式下整机能耗可减少9.3%,提高了整机工作效率。  相似文献   

14.
农业机械自动转向是实现农业机械自动化和智能化的关键技术之一,农田作业工况较为复杂,拖拉机自动转向装置的现场安装调试费时费力。针对这一问题,本研究研制了一种拖拉机自动转向试验台,对拖拉机自动转向装置进行模拟调试与测试以保证其控制的准确性和可靠性,从而减少田间测试时间,降低安装使用成本。本研究选用120马力拖拉机前桥,通过对机械结构、液压系统和电气控制系统的设计计算,搭建了拖拉机自动转向试验台。利用惯性测量单元对转向系统工作性能进行测试,试验结果表明方向盘平均转向间隙为16.48°,车轮平均转角延迟时间为0.14s,响应速度和稳定性符合农业机械转向要求。所研制的拖拉机自动转向试验台能够用于测试拖拉机前桥的工作状态,并对其转向性能参数进行准确采集和记录,可为农业机械自动转向装置的调试和性能检测提供一个高效可靠的测试平台。  相似文献   

15.
东方红拖拉机电控液压转向系统设计及试验研究   总被引:1,自引:0,他引:1  
为实现农业机械自动导航,在东方红-X804拖拉机平台上设计了电控液压转向系统。首先阐述了系统整体设计方案,介绍了系统的组成及工作原理;针对系统非线性特性,采用双闭环控制方法,解析了控制原理。同时,对该系统进行动态分析,推导建立了系统数学模型,使用Mat Lab工具箱进行系统辨识得到传递函数的参数。试验结果表明:系统属于存在不灵敏区的饱和非线性类型,转向角和油缸伸缩量之间呈现近似二阶线性拟合关系,双闭环转向控制方法有效提高了农业导航控制精度。  相似文献   

16.
针对当前拖拉机自动导航转向控制系统结构复杂、算法繁琐及对上位所检测机位置姿态信息要求较高等特点,设计了一种基于51单片机为中央控制载体的拖拉机自动导航执行系统。本系统在不改变原车的液压转向控制系统的前提下,通过加装以步进电机为动力的驱动装置带动方向盘转动实现前轮转向;同时利用角度传感器不断检测前轮转角,为系统在进行转向决策时提供反馈,并且在执行过程中采用涡轮电机控制齿轮啮合与分离。控制系统采用单因子补偿控制算法,通过判断当前车辆的横向偏差走势判断当前的车身偏角。为验证程序算法以及结构设计的可行性,以TN954为实验对象,构建了转向系统和车身偏角的数学模型,运用Matlab/Simulink进行仿真。结果表明:拖拉机以3 km/h作业速度行驶时,在初始横向轨迹偏差设定在5 cm的调整过程中,稳态误差达到2%,单因子补偿控制算法所需的平均调整时间为1. 4 s,满足当今拖拉机自动驾驶控制实时性的要求。  相似文献   

17.
履带拖拉机控制液压变量柱塞泵的流量和方向驱动液压马达,液压马达动力和发动机传入变速箱的动力汇合,实现行驶和差速转向。现有技术存在两方面问题:一是倒车时方向盘转向和车辆驾驶习惯相反;二是在停车和行驶时会停不稳、行驶跑偏。为此,通过对液压油路进行设计和增设控制阀等方法,实现了倒车时正常转向功能;设计了双定位精准调节机构,使液压泵阀芯零位偏心量可调±2.0°,并在零排量处锁定。样机试验表明:操控方向盘倒车转向和常规车辆一样正常;停车稳定可靠,测定100m跑偏量≤3.5m,消除了安全隐患。  相似文献   

18.
基于DGPS与双闭环控制的拖拉机自动导航系统   总被引:1,自引:0,他引:1       下载免费PDF全文
以东方红X-804型拖拉机为平台,设计了一种基于RTK-DGPS定位和双闭环转向控制相结合的自动导航系统,研究提高农业机械导航控制精度的方法。阐述了导航系统整体设计方案,以RTK-DGPS和AHRS500GA分别提供位置信息和辅助修正信息实现准确定位,以电控液压转向系统实现转向控制。分析了整体控制的策略,建立了路径跟踪的传递函数模型,阐述了双闭环转向控制算法的建立过程,以及控制器的硬件实现。试验结果表明:GPS定位数据经过校正后,平均偏差降低至0.031 m;双闭环控制算法提高了自动转向系统性能,稳态时方波信号以及正弦波信号的跟踪误差平均值为0.40°;在拖拉机田间作业跟踪过程中,路径跟踪误差平均值不超过0.019 m,转向轮偏角跟踪误差平均值为0.43°,标准差不超过0.041 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号