首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
以烟草废弃物为主要原料,添加合适比例猪粪进行高温堆肥试验,研究了烟草废弃物堆肥体系中加入两种微生物菌剂(NNY、FB)后的温度、总氮(T-N)、NH4+-N、C/N、种子发芽指数(GI)的动态变化及其对烟草废弃物堆肥产品品质的影响。结果表明,添加微生物菌剂缩短了烟草废弃物堆肥达到高温的时间,延长了高温分解持续时间,增加全氮含量,加快物料NH4+-N和C/N比的降低速率,提高种子发芽指数(GI),加快了烟草废弃物堆肥腐熟化进程。纯烟草废弃物单独堆肥,最高温度为43℃,GI最高为78.4%。添加微生物菌剂NNY、FB的堆肥处理都在堆肥2d后进入高温分解阶段(〉50℃),高温持续时间分别为15、12d,较仅添加合适猪粪比例处理进入高温分解阶段时间提前2d,高温持续时间分别延长5、2d。至堆肥11d,添加微生物菌剂NNY和FB的堆肥处理种子发芽指数较纯烟草废弃物处理分别增加了185.5%和117.7%,较仅添加合适比例猪粪处理分别增加了41.4%和7.6%。添加NNY、FB微生物菌剂的处理可以显著增加烟草废弃物堆肥产品的N、P、K养分含量,降低堆肥容重,提高堆肥总孔隙度和持水孔隙度,改善了堆肥产品的品质。两种微生物菌剂对烟草废弃物高温腐熟效果较优。  相似文献   

2.
为了研究添加生物质炭对蔬菜废弃物堆肥化处理过程中氮素转化特征的影响,分析堆肥过程中氮素的转化及损失规律,用西红柿茎蔓、玉米秸秆和猪粪按一定比例混合后添加不同比例的生物质炭,进行了为期30 d的堆肥发酵试验。结果表明,添加生物质炭能够提高堆体温度,使堆体快速进入高温期,延长高温持续时间,可降低挥发性氨的累积释放量,减少堆肥过程中的氮素损失,从而提高堆肥产品全氮的含量,并可促进堆肥后期NH+4-N向NO-3-N转化,提高非酸水解态氮的含量。添加生物质炭有利于堆肥的腐熟,在堆肥第18 d添加较高比例的生物质炭的处理其NH+4-N/NO-3-N≤0.5,堆肥产品达到腐熟。综合保氮和腐熟效果,蔬菜废弃物在堆肥化过程中以添加10%的生物质炭为最佳。  相似文献   

3.
以油枯为基本原料,采用好氧堆肥方式进行堆肥试验,研究了添加4种不同微生物菌剂的条件下,油枯-稻壳-甘蔗渣堆肥体系中pH、C/N、水溶性NO3--N、水溶性NH4+-N中的动态变化规律及菌剂对高温堆肥腐熟进程的影响。结果表明,添加菌剂能有效缩短堆肥到达高温的时间,延长高温分解阶段,加快物料水溶性NH4+-N和C/N降低,pH和水溶性NO3--N含量升高,加快了油枯堆肥腐熟化进程。添加VT菌剂的堆肥处理相比其他在堆肥15d后最先进入高温分解阶段,高温持续时间为10d,提早5d腐熟,水溶性NO3--N含量从71.41mg.kg-1增加到887.4mg.kg-1,C/N的降低有效促进了NH4+-N向NO3--N的转化,加快了油枯堆肥化进程,有助于提高堆肥腐熟化程度,说明添加VT菌剂的堆肥腐熟效果相对显著。  相似文献   

4.
《土壤通报》2014,(5):1233-1240
以猪粪堆肥为对象,研究添加小麦秸秆生物质炭对猪粪高温好氧堆肥腐熟程度和温室气体排放的影响。结果表明,在整个堆肥腐熟过程中,纯猪粪、猪粪与生物质炭分别以12∶1、5∶1和2.3∶1比例混合的堆体达到的最高堆肥温度分别为44℃、58℃、63℃、60℃,其中5∶1和2.3∶1比例混合的处理均比12∶1处理提前2天进入高温腐熟阶段,并且提前5天完成腐熟过程;12∶1和5∶1生物质炭处理可显著降低堆体的EC值,但高比例(2.3∶1)添加下EC值超出堆肥安全施用范围;与CK相比,添加生物质炭处理堆体NH4+-N含量较对照提前11天降到最低值并趋于稳定;堆肥结束时,生物质炭添加比例为12∶1、5∶1和2.3∶1堆体的NO3--N含量分别比对照提高了53.70%、148.36%和27.61%。且堆肥结束后添加生物质炭12∶1、5∶1和2.3∶1比例的堆体全氮损失率较对照分别降低32.07%、60.78%和50.18%;添加生物质炭显著降低堆体CH4排放总量82.03%~96.93%;5∶1和2.3∶1处理的CO2排放总量较对照显著降低20.21%和41.10%,而12∶1处理与CK相比无显著性差异;12∶1和5∶1处理的N2O的排放总量较CK显著提高66.61%和50.11%,而2.3∶1处理比CK显著降低了40.87%。  相似文献   

5.
绿化植物废弃物和污泥的堆肥特性研究   总被引:12,自引:0,他引:12  
绿化植物废弃物和污泥不同比例的堆肥实验显示其质量比为5∶4时堆肥升温快,高温持续时间最长;全碳和全氮含量在堆肥14 d后都有明显的降低;NO3--N的含量变化不大;NH4+-N的含量降低;堆肥的富里酸(FA)快速降低,胡敏酸(HA)先略有降低,然后快速增加;而种子发芽指数在14 d后均超过了0.8;最终腐殖质化参数(HI)为2.71,腐殖化速率(HR)为14.87%,CFA/CO=10.8;重金属的含量符合相关堆肥标准要求。绿化植物废弃物的高木质素含量决定了C/N、T值(终点C/N)/(初始C/N)、NH4+-N/NO3--N不宜作为其腐熟评价指标,但温度、NO3--N和NH4+-N、腐殖化参数、种子发芽指数可作为绿化植物废弃物和污泥混合堆肥的腐熟评价指标。绿化植物废弃物和污泥混合堆肥效果取决于污泥的添加量,含水量高的污泥用量过多会影响堆肥效果。绿化植物废弃物和污泥综合利用对控制堆肥质量,提高废弃物综合利用,促进城市节能减排有重要意义。  相似文献   

6.
  【目的】  猪粪由于产生量大、碳氮比低、水分含量高等导致储存处理难度较大,好氧堆肥处理猪粪因原料所提供微生物活动环境较差,导致堆肥效率低下。低蛋白饲喂技术在不影响猪生长发育的同时降低了饲料中的氮投入,可以显著改变猪粪的养分组成。本研究通过多种有机肥腐熟指标判定,分析低蛋白含量日粮饲喂的猪粪通过不同堆肥方式是否可快速有效地达到腐熟,并符合安全施用标准。  【方法】  动物试验选取初始体重为60 kg的去势公猪72头,分高、低蛋白饲喂两个处理,每个处理6次重复,每个重复6头猪。试验饲料均适应喂养7天后,开始收集粪便,收粪期为60天。堆肥试验共设4个处理,分别是高蛋白饲喂静态堆肥 (MH)、低蛋白饲喂静态堆肥 (ML)、高蛋白饲喂好氧堆肥 (CH)、低蛋白饲喂好氧堆肥 (CL),堆肥周期为14天。监测了堆肥过程中堆体温度和碳、氮含量等指标,并测定堆肥处理的小白菜种子发芽指数 (GI)。  【结果】  以堆肥过程中高温持续时间、堆肥NH4+-N含量、T值 (堆肥结束C/N与堆肥初始C/N的比值) 和GI (小白菜种子发芽指数) 4项为腐熟判断指标,在14天堆肥周期内,高蛋白饲喂产生的猪粪在静态堆肥情况下 (MH),高温持续时间为0天,NH4+-N含量为0.43 g/kg、T值为0.91、GI指数为0,未能达到腐熟标准;高蛋白饲喂产生的猪粪堆肥在好氧堆肥条件下 (CH),高温持续时间为5天,NH4+-N含量为0.33 g/kg、T值为0.70、GI指数为0.31,T值和GI值均未能达到腐熟标准;低蛋白饲喂产生的猪粪,在静态堆肥中 (ML) 高温持续时间为0 天,NH4+-N含量为0.54 g/kg、T值为0.81、GI指数为0.25,均未能达到腐熟标准;而在好氧堆肥 (CL) 中,高温持续时间为6天,NH4+-N含量0.14 g/kg、T值为0.57、GI指数为0.96,均达到腐熟标准。  【结论】  高蛋白饲养产生的猪粪在静态和好样发酵条件下堆放14天,都不能完全腐熟。低蛋白饲喂产生的猪粪在静态堆放条件下,堆肥14天也不能达到腐熟标准。而低蛋白饲养产生的猪粪在好样条件下,可以在堆放14天时达到腐熟,因为低蛋白饲喂技术使猪粪碳氮比提高了约15%,高温发酵时长延长了40%,极大提高了猪粪短时间内的腐熟程度。因此,在循环农业中,通过上游低蛋白饲喂技术可促进下游猪粪的快速处理和循环利用。  相似文献   

7.
接种微生物菌剂对猪粪堆肥的效果研究   总被引:1,自引:1,他引:1  
研究了接种微生物菌剂对猪粪堆肥的效果。结果表明,添加菌剂堆肥温度第4 d达到50℃,50℃以上持续时间达10 d,第25 d粪大肠菌群值减少到102个/g,种子发芽指数达89%,NH4 -N含量为64.9 mg/kg,C/N下降为18.6∶1,上述指标均达到腐熟要求;对照堆肥温度第7 d达到50℃,50℃以上持续时间为4 d,第25 d粪大肠菌群值为9.6×103个/g,NH4 -N含量为916 mg/kg,C/N为21.0∶1,种子发芽指数为46.5%,均未达到腐熟要求。说明接种微生物菌剂能明显加速堆肥的腐熟进程。  相似文献   

8.
尿素作为补充氮源对西番莲果渣高温堆肥进程的影响   总被引:1,自引:0,他引:1  
徐智  汤利 《农业环境保护》2010,(7):1399-1402
利用西番莲废果渣为基本原料进行堆肥试验,研究了添加尿素及2种微生物菌剂(榕风与福贝)在西番莲果渣堆肥过程中温度、C/N比、总氮(T-N)、水溶性NH4+-N和水溶性NO3--N的动态变化规律。结果表明,加入一定比例的尿素能够增加高温堆肥中〉50℃的高温持续时间、减少最后达到环境温度所需时间;加快堆肥NH4+-N的下降,促进堆肥化腐熟后期NO3--N的累积,增加腐熟后全氮的含量,加快堆肥化进程。在添加尿素的基础上,添加微生物菌剂,显著加快果渣堆肥中C/N比的下降速度,促进堆肥腐熟进程的作用效果更明显,但两种微生物菌剂之间对堆肥化的促进作用效果无显著差异。  相似文献   

9.
沼渣与畜禽粪便混合堆肥发酵效果的综合评价   总被引:11,自引:2,他引:9  
采用正交试验设计方法实施了4组不同物料配比(以干质量计)沼渣与畜禽粪便混合物料堆肥试验,并采用模糊综合评价、灰色关联分析和属性识别法对其发酵效果进行了评价,为沼渣的肥料化利用提供参考。结果表明:T3(沼渣∶猪粪∶鸡粪=5.85∶8.49∶8.19)升温速率最快、高温维持时间最长,所达温度最高,T2(5.85∶7.425∶6.825)次之,T1(7.02∶7.425∶8.19)、T4(7.02∶8.49∶6.825)最差;从pH值、有机质、C/N、NH4+-N、NH4+-N/NO3--N和总养分等化学指标看,T2、T3发酵效果优于T1、T4;堆肥结束后,T1、T2、T3、T4粪大肠菌值分别为1、10-1、10-2、1,发芽指数GI分别为96.72%、103.35%、98.42%、85.13%。上述3种评价方法对T1、T2、T3发酵效果评价一致:较好腐熟,但对T4评价结果分别为较好、基本和极未腐熟。综上所述,由单一指标或单一评价方法评判堆肥腐熟度有局限性。对堆肥发酵效果的评价应综合考虑物理、化学和生物学指标,对比3种评价方法原理,灰色关联分析法是评价堆肥发酵效果的较优方法。  相似文献   

10.
针对当前猪粪好氧堆肥过程中存在的腐熟度低、氮素损失严重、污染气体排放量大等问题,该研究以木本泥炭作为添加剂与猪粪进行联合堆肥,研究了不同木本泥炭添加量(添加比例依次为占物料湿基质量的5%、10%、15%和20%的4个处理)对猪粪好氧堆肥产品腐熟度和堆肥过程中CH4、NH3和H2S等污染气体排放变化的影响。结果表明:在猪粪堆肥中添加木本泥炭作为调理材料,堆体可成功启动升温,在第2~4天堆体可进入高温期,并持续7 d以上,达到无害化卫生标准;经28 d好氧堆肥以后,堆肥产品p H值为8.0左右,电导率值为1.47~1.82 m S/cm,发芽指数均大于80%,达到腐熟标准;木本泥炭添加量增加至15%以上时,有机质分解程度高,物料干质量降解率达22%左右,28 d堆体含水率下降35%左右,CH4、NH3和H2S排放量分别减少82.12%~89.48%、53.47%~63.31%、50.98%~62.76%,总温室气体排放当量减少70.34%~83.26%,堆体总氮损失减少率达44%~63%,保氮效果显著。因此,建议木本泥炭用作猪粪堆肥添加剂的最优添加量为15%~20%(以物料总湿重计)。  相似文献   

11.
针对奶牛养殖场粪便含水率高,堆肥处理成本高的特点,采用以干燥玉米秸秆为调理剂,在较高初始含水率条件下(70%~80%),进行了强制通风堆肥槽和翻转式堆肥仓的对比试验,并且探讨了晾晒脱水作为预处理对堆肥效果的影响。结果表明,各处理堆体升温迅速,且均在50℃以上维持8~12d,满足堆肥无害化的卫生标准(GB7959—1987)要求。至堆肥结束时,各处理含水率均降至40%以下,C/N均降至20以下,WSOC均低于16g·kg-1,NH4+-N含量均低于0.4g·kg-1;除采用堆肥槽在初始含水率为65%下堆肥NH4+-N/NO3--N〉3尚未腐熟完全外,其他处理NH4+-N/NO3--N均小于0.5,腐熟情况较好;所有处理的GI均大于50%,其中采用堆肥槽在较高初始含水率堆肥和晾晒预处理后堆肥GI已达80%,基本消除了植物毒性。采用较为开放的堆肥槽时,以玉米秸秆作调理剂,在较高的初始含水率条件下堆肥效果更好;以晾晒脱水作为预处理后堆肥,可减少所需调理剂的用量,节约了堆肥的成本。  相似文献   

12.
采用特制的堆肥箱,对废弃烤烟茎秆与鸡粪的堆肥化利用进行了研究。结果表明,烤烟茎秆+鸡粪(处理A)混合堆肥处理的堆温保持在50℃以上的时间为10d,而烤烟茎秆+碳酸氢铵(处理B)处理的仅为2d。堆肥30d时,处理A的碳素含量基本趋于稳定,C/N为15.8;处理B的碳素含量仍不稳定,C/N为23.5;处理A的铵态氮与硝态氮的比值为0.43,处理B的达0.60。堆肥20d时,处理A堆料浸出液浸种后的种子发芽指数比处理B的高15个百分点,差异达极显著水平。堆肥50d时,两处理的种子发芽指数差异不明显,种子发芽率均达到100%。烤烟茎秆与鸡粪堆肥成品的有机质和总养分(N、P2O5、K2O)含量、重金属(As,Hg,Ph,Cd,Cr)含量控制标准等完全达到有机肥质量的要求。  相似文献   

13.
用鸡粪与小麦秸秆为堆肥原料进行高温好氧堆肥试验,研究添加鸡粪对小麦秸秆高温好氧堆肥过程中堆体温度、pH值、碳氮比和养分等理化指标的影响,寻求鸡粪与小麦秸秆高温堆肥的最佳配比,为农作物秸秆快速资源化利用提供科学依据和技术指导。结果表明,鸡粪与小麦秸秆在C/N=25时堆体达到的温度最高,为62℃,达到最高温度所需的时间最短,为2 d。堆肥过程中各处理pH值变化基本一致,都是先上升后下降的过程。堆肥结束时A2处理C/N=14.4,NH4+-N含量比最高时降低了76.2%,腐殖质比初始增加了50.2%,胡敏酸相对于最低点升高了160%,富里酸与堆肥前相比降低57.1%。堆肥结束时,全氮含量除A1处理有所降低外,其余处理均有所增加。各处理堆肥全磷、全钾、速效磷和速效钾含量在堆肥结束时比堆肥初始均有所增加。综合判断,鸡粪与小麦秸秆C/N=25进行堆肥较为适宜。  相似文献   

14.
以鸭粪为主要材料,添加芦苇皮、水草等不同调理剂进行高温堆肥试验,研究了不同配比条件下堆肥体系的温度、pH、C/N、种子发芽指数(GI)的动态变化及其对废弃物堆肥品质的影响。结果表明,鸭粪与芦苇皮混合堆肥效果最好,堆体升温快,4d达到50℃,高温维持时间为15d,最高温度达70℃,堆肥30d后,油菜种子发芽指数高达90.48%;鸭粪与水草混合堆肥效果较差,高温维持阶段仅8d,最高温度为57℃;纯鸭粪单独堆肥效果最差,16d达到50℃,高温维持时间为6d,最高温度仅为53℃,到堆肥结束44d,油菜种子发芽指数刚达到80.67%。4种混合配料堆肥产品全氮、全磷、全钾含量都有所增加,其中鸭粪与芦苇皮配比增加率最大,分别为15.90%、11.53%和29.94%。综合以上结果,说明添加秸秆类有机质含量较高的调理剂可加快堆肥的腐熟进程,同时减少营养元素的流失,利于养分的保存,保证了堆肥产品的品质。  相似文献   

15.
在强制通风静态垛装置中研究了牛粪堆肥化中氮素形态和微生物生理群的动态变化。在堆制的56d里,根据堆温变化分阶段采集堆肥样品,测定各种氮素组分的含量和氮素微生物生理群的数量。结果表明,堆肥过程中,总氮减少了21.6%;有机氮是堆肥中的主要氮素形态,其含量降低了19.1%;氨基酸态氮和氨态氮的含量分别降低了20.9%和86.4%,在有机氮和总氮中的比例分别降低了2.2%和5.2%;氨基糖态氮和硝态氮含量分别增加了147%和79%,在有机氮和总氮中的比例分别增加了2倍和1.3倍。氨气的挥发占总损失的63%,高温期的释放量占总挥发量的69%。堆肥中氨化细菌数量较高,在高温期大幅度增加,其数量变化与堆肥中氨气和氨态氮含量都呈极显著正相关关系。在堆肥过程中,硝化细菌数量总体较小,在降温期增加幅度较大;反硝化细菌数量逐渐增加,堆制结束时达到堆肥初期的2.45倍;固氮菌数量总体增加1.8倍,其中降温期数量较多。堆肥过程中存在的反硝化作用,是氮素损失的另一个重要原因。  相似文献   

16.
以板栗苞和牛粪为原料,在北京市密云板栗生态同中进行了为期40d的高温好氧堆肥。板栗苞取自密云水库库区板栗生态园,牛粪取自周边养牛场的奶牛粪便,初始混合物料C/N为25~30,含水量在55%-60%,采用人工翻堆的方法进行通风。结果表明,由于板栗苞与牛粪都是木质纤维素含量较高的物料,所以在堆制结束时,堆肥中的粗纤维含量仍有10.11%,整个过程中粗纤维降解率为57.25%。水溶性硝态氮在堆肥过程中总体呈上升趋势,而铵态氮损失比较严重,比初始物料减少了33.30%。在堆肥结束时,C/N基本稳定在20左右。在堆制20d后,发芽指数(GI)已上升到了80%以上。说明板栗苞和牛粪堆肥40d后基本可以达到腐熟,但堆肥巾仍残存部分有彤的板栗苞,需进一步采取措施促进板栗苞中木质纤维素的降解。  相似文献   

17.
碳氮比对鸡粪堆肥腐熟度和臭气排放的影响   总被引:4,自引:2,他引:2  
为确定鸡粪堆肥最优碳氮比(C/N比),该研究以新鲜鸡粪为堆肥原料,添加玉米秸秆调节初始C/N比为14、18和22进行好氧堆肥,研究不同C/N比对鸡粪堆肥腐熟度和臭气排放(NH3和H2S)的影响。结果表明:C/N比为14的处理堆肥产品未腐熟,C/N比为18和22的处理均达到腐熟。C/N比为18的处理NH3累积排放量和总氮(TN)损失率最高;C/N比为18~22时,C/N比越高,NH3累积排放量和TN损失率越低。C/N比为14的处理H2S累积排放量和总硫(TS)损失率最高;C/N比为18和22的两个处理,H2S累积排放量显著降低,且无显著差异。此外,C/N比为18处理的微生物群落多样性在整个堆肥过程中显著高于C/N比为14和22处理。堆肥的理化指标、臭气排放与微生物群落之间的相关性分析表明,高温、高pH和缺氧环境会增加Firmicutes丰度,进而促进NH3和H2S的排放,相反地,低温、低pH和氧气充足的环境更有利于Actinobacteria增殖,有利于减少NH3和H2S的排放。综合考虑堆肥产品腐熟度和臭气减排效果,建议低C/N比鸡粪堆肥的初始C/N比为18~22。当秸秆资源不足时,建议初始C/N比为18;秸秆资源充足时,建议初始C/N比为22。  相似文献   

18.
为减少水葫芦高温堆肥过程中氮素损失,采用静态高温好氧堆肥的方法,分析了水葫芦堆肥过程中氮素转化规律,研究了添加化学保氮剂对减少堆肥中氮素损失的效果。结果表明,水葫芦堆肥过程中总氮及有机氮含量均呈上升趋势,铵态氮与硝态氮含量均呈先上升后下降的趋势,总氮损失率为12.84%;水葫芦堆肥过程中氮素损失途径主要为以NH3、N2O等气态形式逸出,其中,堆肥前10d是NH3挥发的高峰期,堆制后第5~9d的N2O排放速率最大;添加化学保氮剂对水葫芦堆肥过程第4~10d的氨挥发具有显著的抑制作用,NH3挥发量可减少23.82%,另外,化学保氮剂处理降低了堆制后第0~5d的N2O排放速率,增加了第9d以后的N2O排放速率;使用化学保氮剂原位控制水葫芦堆肥过程的氮素损失具有较好的效果,与常规对照相比,化学保氮剂对水葫芦堆体的保氮效率为32.70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号