首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
无核葡萄SRAP-PCR反应体系的建立和优化   总被引:1,自引:1,他引:0  
以大粒无核葡萄‘皇家秋天’的基因组DNA为模板,对无核葡萄SRAP-PCR反应体系的主要成分及反应退火温度进行优化。获得的最优SRAP-PCR反应程序为94℃预变性5 min,94℃变性1 min,38℃复性1 min,72℃延伸1 min,5个循环;94℃变性1 min,56℃复性1 min,72℃延伸1 min,35个循环;72℃终延伸10 min。25 μL体系中,模板DNA 40 ng,Mg2+ 1.5 mmol/L,dNTPs 0.2 mmol/L,引物0.2 μmol/L,Taq DNA聚合酶0.6 U。实验结果表明,优化后的SRAP-PCR反应体系扩增多态性高,带型清晰,稳定性好。  相似文献   

2.
杨树RAMP体系的建立与优化   总被引:4,自引:0,他引:4  
以杨树基因组DNA为模板,通过正交试验设计,从Mg2+、Taq酶、dNTPs、引物4种因素3个水平对杨树RAMP反应体系进行优化,建立了适合于杨树的RAMP-PCR优化反应体系,该体系为25μL:Mg2+浓度为1.5 mmol/L,dNTPs为0.2 mmol/L,Taq酶1.0 U,引物各为0.4μmol/L。PCR反应程序为:94℃预变性5 min,94℃变性1 min,45℃复性1 min,72℃延伸2 min,45个循环,72℃延伸10 min。  相似文献   

3.
萝卜SRAP-PCR反应体系的建立与优化   总被引:4,自引:0,他引:4  
以萝卜基因组DNA为模板,对其SRAP-PCR反应体系的各个主要影响因子进行了系统的优化,建立了重复性好、多态性丰富的萝卜SRAP-PCR反应体系:20 μL反应体系中,DNA 50 ng、Mg2+2.25 mmol/L、dNTP0.2 mmol/L、Taq1 U、Primer 0.7μmol/L.扩增程序为:94℃预变性5 min;94℃变性1 min、35℃复性1 min、72℃延伸1 min,5个循环;94℃变性1 min、50℃复性1 min、72℃延伸1 min,35个循环,72℃延伸10 min,4℃保温.该反应体系在不同萝卜种质资源遗传多样性分析、遗传图谱构建、分子标记辅助选择育种等方面都有重要作用.  相似文献   

4.
花生基因组SRAP-PCR体系的优化   总被引:8,自引:4,他引:8  
【研究目的】研究花生基因组SRAP-PCR的扩增条件,建立其优化扩增体系;【方法】对模板DNA、引物、dNTP mixture、Taq DNA聚合酶浓度及退火温度设置不同梯度,研究各因素对PCR结果的影响;【结果】扩增程序为:94℃变性2min,1Cycle;94℃变性30s,48℃复性30s,72℃延伸1min,40Cycles;72℃延伸7min。反应体系成份为:DNA模板80ng,左右引物各200ng,dNTP mixture2.0mmol/L,Taq DNA聚合酶3U,10×Buffer8μl,总体积60μl。【结论】建立了满足花生基因组SRAP-PCR的优化扩增体系。  相似文献   

5.
草莓SRAP反应体系优化及引物筛选   总被引:1,自引:1,他引:0  
为建立草莓SRAP-PCR适宜的反应体系,以草莓品种‘丰香’为实验材料,采用单因素实验设计,对Mg2+、dNTPs、Taq DNA聚合酶及引物浓度4个因素4水平进行优化,并在此基础上对模板DNA的浓度和退火温度进行优化。结果表明,草莓SRAP-PCR最佳反应体系为:20μL的反应体系中含10×PCR buffer 2μL,Mg2+ 2.0 mmol/L,dNTPs 0.3 mmol/L,正反向引物各为0.6μmol/L,Taq DNA聚合酶1.0 U,模板DNA为100 ng。扩增程序为:94℃预变性5 min;94℃变性1 min,35℃退火1 min,72℃延伸1 min,共5个循环;94℃变性1 min,54℃退火1 min,72℃延伸1 min,共35个循环;72℃延伸5 min;4℃保存。利用该优化体系筛选引物,从110对SRAP引物组合中筛选出29对条带清晰丰富、多态性好的引物,证明了此优化体系稳定可靠,能够用于草莓种质资源的鉴定、分子标记辅助育种等研究。  相似文献   

6.
以巴戟天叶片提取的基因组DNA为材料,对影响ISSR-PCR扩增效果的一些因素,如dNTPs浓度、Mg2+浓度、TaqDNA聚合酶用量、引物用量、模板DNA用量以及退火温度等指标进行筛选和优化,确立了可用于巴戟天的ISSR-PCR分析最适宜的PCR反应条件,即20μl PCR反应体积中含0.2 mmol/L dNTPs,2.0 mmol/L Mg2+,1.0 U Taq DNA聚合酶,0.5μmol/L引物,50 ng模板DNA.PCR扩增程序:94℃预变性5 min,94℃变性30 s,53.4℃退火45 s,72℃延伸1 min,45个循环,72℃延伸10 min,4℃保存.应用该ISSR体系对6份巴戟天种质进行了扩增,证实了该体系的适用性和稳定性.  相似文献   

7.
《分子植物育种》2021,19(10):3339-3343
本研究从Mg2+、dNTPs、Taq DNA聚合酶、引物、模板5种因素对蚕豆序列相关扩增多态性(sequencerelated amplified polymorphism, SRAP)体系进行了优化。结果表明,蚕豆最佳PCR反应体系(25μL)为:1.0 mmol/L d NTPs,0.5 mmol//L Mg2+,0.4 U Taq酶,4.0 mmol/L引物,2.0 mmol/L的模板。反应程序为:94℃预变性5 min;94℃变性1 min,35℃复性1 min,72℃延伸1 min,5个循环;94℃变性1 min,50℃复性1 min,72℃延伸1 min,35个循环;72℃延伸5 min,4℃保存。利用优化的SRAP标记对12份蚕豆材料进行遗传多样性分析,研究结果表明12个材料明显聚为2个类群,类群中又有亚类。12个蚕豆品种中有些虽然来自同一地区,但亲缘关系却较远,而来自不同地区的蚕豆也显示出来很大差异,说明蚕豆材料具有丰富的遗传多样性。  相似文献   

8.
胡椒SRAP反应体系的建立和优化   总被引:2,自引:1,他引:1  
姜艳  刘进平 《中国农学通报》2012,28(31):141-145
建立并优化胡椒SRAP分子标记体系,为海南胡椒属植物亲缘关系和遗传多态性分析、物种和品种鉴定等打下技术基础。利用单因素随机试验对胡椒SRAP-PCR反应体系中各组分(Taq DNA聚合酶、dNTP、模板DNA、引物和Mg2+)的浓度进行优化,同时筛选SRAP-PCR反应的循环数和最适退火温度。通过实验确定了SRAP-PCR反应体系为:反应总体系为20 μL,其中引物0.35 μmol/L,Taq DNA聚合酶1.0 U,dNTP 0.6 mmol/L,Mg2 + 1.5 mmol/L,模板DNA 25~200 ng,同时通过梯度PCR试验,确定引物最佳退火温度;最佳SRAP-PCR反应程序为:94℃预变性5 min;94℃变性30 s,35℃退火30 s,72℃延伸45 s,5个循环;然后94℃变性30 s,48℃退火30 s,72℃延伸45 s,40个循环;最后72℃延伸7 min,4℃保存。SRAP-PCR体系适为胡椒属植物遗传多样性分析奠定了基础,并成功地应用于海南胡椒属植物亲缘关系和遗传多态性分析。  相似文献   

9.
以鼠尾草属植物叶片为材料,提取基因组DNA,并对RAPD反应条件进行了系统优化.结果表明,采用核DNA法提取的DNA质量较高,适宜于RAPD分析;RAPD扩增最佳反应体系为20μl反应体系中,10×buffer 2.0μl,模板DNA 20 ng,Mg 浓度2.0 mmol/L,引物浓度0.6μmol/L,dNTPs浓度0.2mmol/L,Taq酶1.0U.扩增反应程序为94℃预变性5min,94℃变性1min,36℃退火1main,72℃延伸2main;40个循环;72℃后延伸10main,4℃保存.  相似文献   

10.
以濒危物种狭叶坡垒硅胶干燥的叶片为材料,研究其RAPD-PCR体系优化条件.结果表明,优化的狭叶坡垒RAPD-PCR反应体系为:25μL体系中1×PCR buffer,3 mmol/L Mg2+,0.2 mmol/L dNTPs,0.5 U/25μL Taq聚合酶,0.4μmol/L引物,5 ng/μL DNA模板;最佳扩增程序为:94℃预变性5min;94℃变性1min,35℃退火1 min,72℃延伸1.5min,35个循环;72℃最后延伸7 min.  相似文献   

11.
桃遗传多样性的SRAP和SSR标记分析   总被引:5,自引:0,他引:5  
采用相关序列扩增多态性(SRAP)和简单序列重复多态性(SSR)分子标记,对47份桃(Prunus persica)品种的遗传多样性进行了分析.选用带型清晰的19对SRAP引物和5对SSR引物对47份桃品种的基因组DNA进行扩增,共检测到82个多态性位点.平均每对引物组合产生3.4个多态性位点.应用NTSYS-PC (Version 2.1) 软件采用平均距离法(UPGMA)进行聚类分析.结果表明,47份桃品种的相关系数为0.501~0.842,从总体来看,所选取的47个桃品种相关系数相对较低,遗传多样性比较丰富.对聚类结果分析显示,大部分具有亲缘关系的品种及形态学、生物学特征相近的品种聚在一类,说明聚类分析结果与系谱及生物学特征具有一定的相符性.该研究结果对桃种质资源的鉴定,杂交亲本的选择具有一定的参考价值.  相似文献   

12.
木薯SRAP扩增体系的建立与优化   总被引:7,自引:3,他引:4  
建立适宜木薯DNA的SRAP扩增体系,为木薯分子标记和基因图谱的构建打下基础。以木薯基因组DNA为模板,采用序列相关扩增多态性(sequence related amplified polymorphism,SRAP)技术对木薯DNA进行PCR扩增,逐级优化反应参数。最佳SRAP-PCR反应体系(10Ll)为:DNA (50ng/μl) 0.5μl、10×PCR buffer (Mg2+) 1.0μl、dNTPs (20mM) 0.2μl、primer (50ng) 0.3μl、Taq polymerase (5U/μl) 0.2μl。该程序和体系能很好地满足木薯基因组SRAP扩增的要求,SRAP标记能够很好应用于木薯遗传研究。  相似文献   

13.
龙眼SRAP反应体系的建立和优化   总被引:3,自引:1,他引:2  
采用分步优化的方法对影响龙眼SRAP-PCR反应的模板DNA用量、Mg2+浓度、dNTP浓度、引物浓度、TagDNA聚合酶用量等进行了研究。确立了适合龙眼SRAP分析的反应体系,即体系总体积25μl,包含1×PCR Buffer ,Mg2+ 2.0mmol/L,dNTPs 0.5 mmol/L,引物0.3μmol/L,模板DNA 10ng, TaqDNA聚合酶1.5 U。结果表明,该体系能很好地满足龙眼基因组SRAP扩增的要求,SRAP标记应用于龙眼遗传研究是可行的。  相似文献   

14.
芝麻SRAP反应体系的建立与优化   总被引:5,自引:0,他引:5  
以芝麻幼叶提取的DNA为试验材料,通过对影响SRAP扩增结果的重要反应因素dNTPs、Mg2 + 、Taq酶、随机引物及模板DNA进行优化,建立了芝麻扩增多态性高、稳定性强、带型清晰的SRAP最佳反应体系:dNTPs(10mmol/L)0.30μl,Mg2 +(25mmol/L)1.20μl,Taq酶1.00U,正反引物各50ng,DNA模板80ng,10×Buffer 1.5μl,总体积15μl,为SRAP标记技术在芝麻分子生物学研究方面的应用奠定了基础。  相似文献   

15.
为了建立青蒿的SRAP最佳扩增体系,并筛选出SRAP多态性引物,本研究以青蒿叶片DNA为模板,采用正交试验设计,以Mg^2+、dNTP Mix、Taq DNA聚合酶、引物和DNA模板5种因素5个水平,对青蒿SRAP反应体系进行研究。结果表明,青蒿SRAP-PCR最佳反应体系为:引物0.6μmol/L、Mg^2+2.0 mmol/L、模板DNA 5.1 ng、Taq DNA聚合酶2.0 U、dNTPs 0.25 mmol/L,总体积为25μL。各因素对扩增反应均有不同影响,其中引物浓度的影响最大,dNTPs的影响最小。运用该体系对不同种质资源的青蒿进行验证,证明该体系稳定可靠,并在30个引物组合中筛选出了25对扩增条带清晰,多态性丰富的引物组合。这一结论为今后利用SRAP标记技术进行青蒿分子遗传学研究提供了科学依据。  相似文献   

16.
为了建立光萼荷属植物(Aechmea) SRAP-PCR反应体系,为今后光萼荷属植物种质资源研究提供技术支持,本研究通过L16(45)正交试验设计,对光萼荷属植物SRAP反应体系中的Mg2+、dNTPs、Taq DNA聚合酶、引物和模板DNA浓度等5个因素进行优化实验,并筛选多态性SRAP引物组合。结果表明,光萼荷属植物的最佳SRAP反应体系为1.50 mmol/L Mg2+、400 μmol/L dNTPs、1.5 U Taq DNA聚合酶、15 μmol/L引物、30 ng模板DNA及1×PCR buffer。各因素对SRAP-PCR扩增反应结果影响的差异较大,依次为模板DNA>Taq DNA聚合酶>dNTPs>引物>Mg2+。从56对SRAP引物组合中筛选出51对扩增条带清晰、多态性丰富的SRAP引物组合,多态性引物比率达90%以上。通过不同光萼荷属植物和不同引物组合对该反应体系进行验证,均获得了多态性丰富、条带清晰的扩增图谱,表明本研究建立的光萼荷属植物SRAP-PCR反应体系稳定可靠。  相似文献   

17.
樱桃ACC氧化酶基因的克隆和序列分析   总被引:4,自引:0,他引:4  
以樱桃基因组DNA为模板定向克隆其ACC氧化酶基因。对PCR扩增的目的片段用1%琼脂糖凝胶电泳检测后,进行回收、连续转化,通过蓝白筛选挑取白色菌落提取质粒DNA进行酶切鉴定,确定重组子后采用双脱氧终止法测定DNA全序列。DNA测序结果显示,樱桃的ACC氧化酶基因序列全长为1310bp,由2个外显子和3个内含子构成,外显子总长为1000bp。同源性分析可知,樱桃与桃的ACC氧化酶基因DNA序列同源性达97.8%。  相似文献   

18.
番石榴SRAP反应体系的建立与正交优化   总被引:1,自引:1,他引:0  
采用正交设计方法,对影响番石榴SRAP反应体系的Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA浓度等进行了优化,建立了适用于番石榴的SRAP反应体系。该优化的20 μL反应体系中包含2.5 mmol/L Mg2+,0.15 mmol/L dNTPs,0.4 μmol/L引物,1.5 U Taq DNA聚合酶和20 ng模板DNA。利用该优化体系通过64对SRAP引物组合对5份番石榴材料进行了SRAP-PCR扩增,结果表明SRAP引物及优化后的反应体系能够有效地用于番石榴种质资源鉴定及遗传多样性分析等研究。  相似文献   

19.
为建立适合新疆野生欧洲李的ISSR-PCR反应体系,本研究以野生欧洲李为供试材料,采用L16(45)正交试验设计和单因素试验设计相结合的方法,对影响野生欧洲李ISSR-PCR反应体系的5个因素(DNA模板,Taq酶,dNTPs,引物,Mg2+)进行筛选与优化,对16条引物的退火温度进行筛选。结果表明,Taq酶对PCR扩增反应的影响最大,野生欧洲李ISSR-PCR最佳反应体系为:总体积20μL,5 U Taq酶0.10μL,10 mmol/L引物1.00μL,2.5 mmol/L dNTPs 1.50μL,10×Buffer(含Mg2+)2.00μL,50 ng/μL DNA模板1.00μL,双蒸水14.40μL。建立的ISSR-PCR反应体系经过22份野生欧洲李样品验证,表明反应体系稳定可靠,可用于后续遗传多样性研究,为野生欧洲李种质资源的保护和利用提供理论参考。  相似文献   

20.
小型西瓜SRAP技术体系优化   总被引:2,自引:1,他引:1  
为探讨小型西瓜种质遗传分析奠定基础以及不类型西瓜SRAP技术体系的通用性,以小型西瓜F1‘秀丽’为试材,利用正交试验设计,对SRAP-PCR反应体系中的Mg2+浓度、dNTPs浓度、引物浓度、Taq聚合酶浓度和模板DNA浓度进行5因素4水平的筛选分析,用Me3-Em3引物组合进行PCR扩增以确定最优反应体系;进一步应用该优化反应体系,对5个不同引物和37份不同果型西瓜资源DNA进行SRAP-PCR扩增。结果表明,小型西瓜SRAP-PCR最佳反应体系为:10× PCR buffer 2 μL、Mg2+ 3.0 mmol/L,dNTPs 0.2 mmol/L,引物0.5 μmol/L,模板DNA 40 ng、Taq聚合酶0.5 U,总体积为10 μL。不同果型西瓜资源DNA进行SRAP-PCR扩增,电泳条带清晰、稳定性好,说明不同果型西瓜种质SPAP体系具有通用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号