首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
不同类型生物炭理化特性及其对土壤持水性的影响   总被引:5,自引:0,他引:5  
[目的]对比分析不同原料制备的生物炭的理化性质及其对土壤持水性的影响,为选择合适的生物炭改良和修复土壤提供理论依据。[方法]以鸡粪、浒苔及稻草为原料,分高、中、低3种不同温度制备生物炭,运用元素分析、盆栽培养等试验研究其特性。[结果]稻草中C,H及灰分的含量较高,鸡粪中N含量较高,浒苔中C含量低,O含量较高;而在制备的生物炭中,鸡粪基生物炭C和N含量较高,浒苔基生物C含量却比较低。另外,3种类型生物炭的H/C摩尔比值随着热解温度的升高而逐渐降低,C/N比随着热解温度的升高而增大。不同原料制备的生物炭pH值随着热解温度的升高而增大,pH值从6.82~8.35升高至9.33~10.29;3种类型的生物炭pH值随着灰分含量的增大而增大,但增长速率不同,稻草基生物炭浒苔基生物炭鸡粪基生物炭。并且,随着热解温度的升高,鸡粪、浒苔及稻草基生物炭引起土壤持水性逐渐增强。[结论]在土壤提供营养成分方面,鸡粪基生物炭显然更具优势,而且在促进土壤持水性方面,鸡粪生物炭也相对更强一些。  相似文献   

2.
不同热解温度限氧制备的畜禽粪便生物炭养分特征   总被引:3,自引:2,他引:1  
为了分析畜禽粪便生物炭中的养分特征变化,以鸡粪、猪粪渣和牛粪为原料,采用限氧控温法制备生物炭,研究了不同热解温度(350、450、550、650和750 ℃)的畜禽粪便生物炭灰分含量,C含量、大量和中微量元素养分含量及其残留率的变化,并分析了C/N比值,原材料与炭化产品养分含量、及热解温度和生物炭养分特征的相关性。结果表明,随着热解温度的升高,畜禽粪便生物炭C、N含量逐渐下降,灰分含量和P、K、Ca、Mg、Fe、Mn养分含量逐渐增加。高温热解虽增加畜禽粪便生物炭的养分总量和C/N比值,但也降低了各养分残留率。综合分析表明,畜禽粪便生物炭养分含量及其残留率与原材料中的养分含量、热解温度密切相关,其中与热解温度相关性显著。因此,选择高C和高养分含量的畜禽粪便原材料是提升生物炭养分含量的基础,而适宜温度是保留生物炭较高养分残留率的关键。该研究中畜禽粪便适宜热解温度为450 ℃,该温度下各生物炭的养分残留率整体表现为牛粪>猪粪渣>鸡粪。  相似文献   

3.
珠江三角洲典型城市蔬菜中多环芳烃分布特征   总被引:6,自引:0,他引:6  
万开  江明  杨国义  张天彬  高原雪  万洪富 《土壤》2009,41(4):583-587
在东莞市采集77个蔬菜样品,采用气相色谱-质谱仪对其16种优先控制多环芳烃(PAHs)进行分析.结果表明:东莞市蔬菜中16种PAHs含量在26.35 ~ 3748 μg/kg 之间,平均含量为656.3 μg/kg;蔬菜中PAHs含量以3环和4环PAHs为主,单个PAHs以荧蒽、芘和菲含量最高;不同种类蔬菜间PAHs含量差异很大,叶菜类较果菜类蔬菜中的PAHs含量高,主要取决于蔬菜种类间不同的生长结构特征;东莞市的蔬菜受到一定程度的PAHs污染.  相似文献   

4.
采用不同粒径(0.5,0.25~0.5,0.25mm)的4种原材料(椰糠、木薯秸秆、桉树枝、猪粪),通过不同热解温度(300,400,500,600℃)炭化不同时间(1,2,3,5h)制备生物炭,探讨制炭条件对生物炭碱性基团含量的影响,并探索生物炭改良酸性土壤pH的影响因素。结果表明,不同制炭条件所制备的生物炭均呈碱性,碱性基团含量范围为0.40~1.05mmol/g。不同原材料生物炭碱性基团含量呈现猪粪木薯秸秆椰糠桉树枝的规律。随着热解温度的升高、热解时间的延长及原材料粉碎粒度的减小,生物炭碱性基团含量呈增加趋势。研究还表明,添加生物炭能显著提高酸性土壤pH,其改良酸性土壤的能力随碱性基团含量的增加而增强。原材料粉碎粒度减小、热解温度升高和热解时间延长及用量增加,均能有效提升生物炭改良酸性土壤pH的效果。  相似文献   

5.
热解温度对玉米秸秆炭产率及理化特性的影响   总被引:2,自引:0,他引:2  
【目的】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的炭化温度。【方法】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下 (100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃) 分别炭化2 h,制备生物炭,收集并测定了固体产物生物炭产率及特性。【结果】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含量在400℃以后随热解温度升高而降低。阳离子交换量 (CEC) 在400℃~600℃达到较高水平,为70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH随着热解温度的升高逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到500℃时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中–CH3、–CH2、–OH、–C=O间发生缔合或消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径先变小后变大,在400℃~600℃条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表面积和比孔容呈极显著正相关关系(P < 0.01)。【结论】综合各项指标,玉米秸秆的最佳热解温度为400℃~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。  相似文献   

6.
热解温度对回转窑玉米秸秆热解产物理化特性的影响   总被引:1,自引:1,他引:0  
针对北方农业秸秆废弃物产量巨大且无法全部还田导致丢弃和露天焚烧现象激增等问题,该文通过搭建小型回转窑生物质热解装置考察不同热解温度下秸秆热解特性,分析主要产物的产率、元素组成等理化特性指标。结果表明:回转窑内热解温度的增加提高了热解液相产物产率和热解水产率,焦油产率呈先增加后降低趋势。与此同时,热解气总体积逐渐增加,H2含量和CH4含量也有所提高,生物炭产率和热值有所降低。当热解温度从400℃增加至700℃时,焦油产率从12.21%增加至21.70%;当温度进一步增加至800℃时,焦油产率降低至20.13%;相应的焦油热值从400℃时的19 974.0 kJ/kg逐渐增加到800℃时的21 710.0 kJ/kg。高热解温度加快热解过程中的热传递,加剧生物质大分子所含的羟基、羰基等含氧官能团的分解并促进挥发物的产生,进而提高了热解液体产物、热解水和焦油产率。过高的加热温度会加剧挥发分的二次反应,降低焦油产率;更多的含氧杂环结构会随着热解温度提高逐渐分解,因而焦油热值逐渐增加。生物炭产率随着温度增加逐渐降低,生物炭pH值和C/N比均逐渐增加,在兼顾生物炭产率和应用于炭基肥制备所需理化性质的同时需充分考虑热解温度影响。  相似文献   

7.
采用低温烘焙技术制备玉米秸秆成型生物炭,可解决玉米秸秆带来的环境污染及资源浪费。研究以玉米秸秆成型颗粒为原料,利用固定床反应器,制备了不同烘焙温度(250~400℃)成型生物炭,采用元素分析、工业分析、能量产率、质量产率、机械性能、疏水性、红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电镜(Scanning electron microscopy,SEM)、元素K含量等分析生物炭特性。随烘焙温度升高,热值增加,能量产率降低,400℃时,成型生物炭热值为21.86MJ/kg,能量产率为50.17%。成型生物炭颗粒表面裂纹增多,机械性能降低,350℃烘焙成型生物炭(CSP350)机械性能好于400℃烘焙成型生物炭(CSP400),低于成型生物质颗。烘焙生物炭疏水性提升,可贮藏于室外。成型玉米秸秆经烘焙热解发生了脱水、脱羰基、脱甲基反应,纤维素、半纤维素热解剧烈,木质素开始热解。随温度升高,其孔径呈下降趋势,比表面积增大。结果表明,玉米秸秆成型烘焙生物炭可作为优质生物燃料,适宜制备温度为300~350℃。  相似文献   

8.
海藻热解生物油的成分分析   总被引:2,自引:2,他引:0  
为了明确海藻热解生物油的主要成分及热解工况对成分的影响,对海藻生物质(条浒苔、马尾藻)不同工况下热解制得的生物油进行气相色谱质谱联用分析。海藻类生物油成分除了含氮化合物外,主要是一些烃类、酮类、醛类、醇类和酚类化合物,以及较大分子量的羧酸及其衍生物,并包含了少量呋喃、吡喃、吡啶等衍生物的杂环化合物。条浒苔油中羧酸及其衍生物(37.85%)和烃类物质(16.61%)较多,而马尾藻生物油中甾族(30.16%)和醇类化合物(24.81%)较多,也检测出油酸、棕榈酸酯和花生酸。不同工况下产生的生物油在组成成分上非常相似,只是相对含量有所不同。热解温度对海藻油组分分布起了重要作用,而载气流量对热解海藻油组分分布的影响不明显。试验结果还表明海藻油中含氮化合物的形成主要与蛋白质的分解有关。海藻生物油相对于陆上植物热解生物油优点为高含烃量,低含氧量。海藻热解制油工艺中温度应控制在500~600℃之间,能达到较佳产油率和油品。  相似文献   

9.
北京东南郊再生水灌区土壤PAHs污染特征   总被引:1,自引:0,他引:1  
采用Eijkelkamp土壤采样器对北京东南郊再生水灌区进行了3个钻孔剖面采样,同时采集了灌溉用水及地下水样品,并采用气相色谱-质谱联用仪对16种多环芳烃(PAHs)进行定量分析。结果表明,表层土壤中有14种PAHs检出,浓度在0.4-53.1 μg·kg-1之间,∑PAHs平均含量为206.7 μg·kg-1,达到了土壤污染临界值;表层以下PAHs的检出种类和含量显著减少,以中、低环的萘、菲、芴、荧蒽、芘为主,∑PAHs仅占表层的3.8%-12.0%,从剖面PAHs含量变化可以判断,低环PAHs较易迁移,迁移性强弱顺序为萘、芴〉菲〉芘、荧蒽;污灌区表土中PAHs组成与大气降尘接近,但与再生灌区有明显差异,这种差异主要由于灌溉用水不同所造成;再生水灌区表土以下土壤剖面检出的PAHs与再生水中的PAHs一致,说明再生水灌溉是导致土壤剖面PAHs污染的主要原因,同时地下水中检出的PAHs种类也与土壤剖面基本一致,但含量较高,可能是早期污水灌溉所造成。  相似文献   

10.
城乡结合带农田土壤多环芳烃空间分布特征及来源解析   总被引:2,自引:0,他引:2  
为了解城乡结合带农田土壤PAHs的污染特征及分布规律,本文以南京市江宁区周岗镇为例,就该地区表层农田土壤中15种优控PAHs组分的含量、空间分布特征及来源进行了研究。结果表明:有14种PAHs普遍被检出(苊未检出),以高环(4 ~ 6环)PAHs为主;PAHs总量范围在24.49 ~ 750.04 μg kg?1之间,平均为230.89 μg kg?1,有48.28%的土样受到了污染;与国内其他地区农田土壤相比,研究区PAHs含量处于中低水平;空间趋势面分析表明,14种PAHs在东西和南北方向上呈现出明显的规律增减性;从空间分布格局来看,研究区土壤中14种PAHs含量差异较大,整体呈现由东北向西南递减的趋势,且个别点位存在PAHs的富集现象,存在局部点源污染;采用主成分及多元线性回归分析污染来源,结果显示,研究区PAHs来源主要为煤、生物质燃烧,其次为汽油、柴油燃烧,贡献率分别为71%和29%,这与当地的工业发展水平关系密切。  相似文献   

11.
低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响   总被引:2,自引:2,他引:0  
【目的】以富士(Fuji)、 秦冠(Qinguan)嫁接在平邑甜茶(Malus hupehensis Rehd.)上的当年生盆栽苗为试验材料,采用砂培方法,研究了缺氮胁迫和干旱对富士和秦冠生长情况、 光合参数、 植株各部位氮磷钾含量及氮素利用效率的影响,分析比较了低氮干旱条件下富士和秦冠生长及氮素利用的差异,以期为果树生产高效肥水利用提供理论指导。【方法】试验共设四个处理: 正常氮正常水(ZZ)、 低氮正常水(DZ)、 正常氮干旱(ZG)、 低氮干旱(DG)。氮素和水分均设置两个水平,分别为正常氮(6 mmol/L NO-3-N)、 低氮(0.3 mmol/LNO-3-N)、 正常供水(保持盆中砂子相对含水量为饱和含水量的80%~85%)、 干旱处理(保持盆中砂子相对含水量为饱和含水量的60%~65%)。【结果】富士和秦冠的生物量(茎和叶)、 株高茎粗等生长指标以及光合速率、 气孔导度、 蒸腾速率均为正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG),并且相对应处理下秦冠的以上指标均高于富士;正常供水下,缺氮处理使富士、 秦冠的根冠比比正常氮处理均有所增加,富士提高了2.05%,秦冠提高了22.40%。富士和秦冠的氮、 磷、 钾含量均表现出正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG); 氮、 钾元素含量在植株各部位的分布顺序依次是叶>根>茎,磷元素则是根>叶>茎;光合氮素利用效率(PNUE)和氮素利用效率表现为秦冠处理之间差异极显著,富士处理之间差异不显著;秦冠的PNUE和NUE明显高于富士,在低氮正常水(DZ)处理下,秦冠氮肥利用率比富士高42.07%,在低氮干旱(DG)处理下高64.14%;低氮胁迫下富士和秦冠的NUE显著提高,并且秦冠提高的幅度高于富士。【结论】施用氮肥能够显著提高富士与秦冠的干物质量,同等水肥条件下,秦冠生长优于富士;水分亏缺会减少叶片对氮的吸收,干旱条件下适度增施氮肥,可提高果树的抗旱能力;低氮干旱胁迫下秦冠的生长指标、 光合指标及氮素利用效率指标均优于富士,表现出较强的抗低氮干旱胁迫的能力。  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) is a new technique for the analysis of plant material. This study investigates the application of LIBS to pasture-based plant samples. The LIBS measurements were obtained from pelletized pasture samples (100 samples) that had been also analyzed by inductively coupled plasma–optical emission spectroscopy (ICP-OES) following microwave digestion for calibration and comparison purposes. Comparisons for elements sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), boron (B), phosphorus (P), and sulfur (S) showed that LIBS could be used for almost all the standard profile total elements with concentrations down to low mg/kg levels (observed error of Na: 0.024 percent, K: 0.18 percent, Mg: 0.016 percent, Ca: 0.073 percent, P: 0.017 percent, Mn: 31 mg/kg, Fe: 150 mg/kg, Zn: 6.6 mg/kg, and B: 1.1 mg/kg). Elemental analysis at less than mg/kg levels was not possible using LIBS. The elements S and Cu were particularly difficult to analyze with reliability using LIBS at the concentration levels found in the plant samples. Replacing microwave digestion and subsequent ICP analysis with a direct analysis of dried plant samples using LIBS has the potential to improve the productivity and reduce the cost of testing.  相似文献   

13.
正The Center for Agricultural Resources Research(CARR),the Institute of Genetics and Developmental Biology(IGDB),Chinese Academy of Sciences,invites applicants for several research group leader positions.CARR is one of the research organizations in Chinese Academy of Sciences(CAS).We seek nominations and applications from individuals who have expertise and a record of accomplishment in research areas related to ecology,agro-hydrology,  相似文献   

14.
“Wicked” problems are those that are complex and that change when solutions are applied. Many conflicts in conservation fall into this category. The study approached the problem of how to constrain the apparent wickedness of a problem in the conservation management of a species by using simple empirical indicators to carry out iterative assessment of the risk to a population and to document how this risk evolves in relation to the addition of new data and the implementation of management actions. Effects of high levels of uncertainty within data and also concerning population structure were examined through stochastic simulation and by exploration of scenarios. Historical trends in the example used, the Steller sea lion, showed rapid declines in abundance in some regions during the 1980s. The current total population is 130,000-150,000 Steller sea lions through Alaska and British Columbia and this number has been stable since about 1990 in spite of regional differences in population dynamics. Regional differences in the sequence of changes in the number of pups and non-pups, suggested that an internal re-distribution of juveniles could have happened between 1980 and 1990. Current productivity also appears close to the long-term mean. Stochastic population projection using various scenarios showed that, based upon this history, the risk of extinction for the population has declined and is below reasonable thresholds for considering the population to be endangered. The trends in risk suggest that management actions taken since 1990 have probably been effective. Consequently, the conservation management objectives for the Steller sea lion are probably being met. The approach provides a mechanism, based upon experience and scenario analysis, for exploring future policy options and may help to constrain the debate amongst stakeholders about the cost-benefit trade-offs associated with different options.  相似文献   

15.
Nutrient distributions under no tillage (NT) compared with conventional disk-and-bed tillage (CT) management in the warm, humid region of the southeastern USA need to be assessed so that future placement, quantity, and type of fertilizers can be altered, if necessary, to efficiently match crop demands. We determined soil-profile distributions of pH, N, P, S, K, Ca, Mg, Na, Zn, Fe, Mn, and Cu to a depth of 0.9 m at the end of 8.5 years of continuous CT and NT management on a Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas. Most dramatic changes occurred within the 0–0.05 m depth, where soil under NT had lower pH, Fe, and Cu than under CT, but greater P, K, Zn, and Mn. Greater P and K under NT than under CT also occurred below the till-zone (0.15–0.3 m). At a depth of 0–0.3 m, soil under NT contained greater amounts of extractable P, K, Zn, Fe, Mn, and Cu than under CT. Nitrogen fertilization had little effect on nutrient distributions, except resulting in greater extractable K at 0–0.05 m and greater nitrate at 0–0.15 m. Few changes in soil-profile distributions were observed for extractable S, Ca, Mg, and Na. Long-term continuous use of NT on this fine-textured, high-fertility (except for N) soil had no apparent adverse effects on nutrient distributions relative to CT, but enhanced conservation and availability of P, K, Zn, Fe, Mn, and Cu near the soil surface where crop roots proliferate.  相似文献   

16.
The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups, and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station, we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term experiment designed to examine the effects and interactions of annual fire, mowing, and fertilization (N and P) on prairie soil communities and processes. For nearly all taxa, in both years, responses were characterized by significant treatment interactions, but some general patterns were evident. Introduced European earthworms (Aporrectodea spp. and Octolasion spp.) were most abundant in plots where fire was excluded, and the proportion of the total earthworm community consisting of introduced earthworms was greater in unburned, unmowed, and fertilized plots. Nymphs of two Cicada genera were collected (Cicadetta spp. and Tibicen spp.). Cicadetta nymphs were more abundant in burned plots, but mowing reduced their abundance. Tibicen nymphs were collected almost exclusively from unburned plots. Treatment effects on herbivorous beetle larvae (Scarabaeidae, Elateridae, and Curculionidae) were variable, but nutrient additions (N or P) usually resulted in greater densities, whereas mowing usually resulted in lower densities. Our results suggest that departures from historical disturbance regimes (i.e. frequent fire and grazing) may render soils more susceptible to increased numbers of European earthworms, and that interactions between fire, aboveground biomass removal, and vegetation responses affect the structure and composition of invertebrate communities in tallgrass prairie soils.  相似文献   

17.
Abstract

A 3-year study was carried out to investigate quality parameters in 14 tree fruit and berry species grown in southern Norway. The species were blueberry, apple, aronia, sour cherry, sweet cherry, red raspberry, strawberry, blackcurrant, gooseberry, red currant and elderberry, harvested along with wild bilberry, cloudberry and lingonberry. Significant differences between species were identified for all quality parameters. The coefficient of variation between species was lowest for pH (12.5%), dry matter (18.9%) and soluble solids (25.3%), followed by titratable acids (59.3%), total phenolics (83.8%), antioxidant capacity FRAP (85.7%) and antiradical power by the DPPH-assay (97.8%), total monomeric anthocyanins (132%) and ascorbic acid (137%). Average coefficient of variation within species were lower and ranged from 4 (pH) to 62% (ascorbic acid). Only the FRAP values were significantly affected by harvesting year with lower levels in 2004 than in 2005 and 2006. There were significant interactions between species and harvesting year for dry matter, soluble solids, pH, ascorbic acid and FRAP. The results indicate generic ranges in composition within species independent upon growing location and climate, and the composition of the tree fruits and berries is not likely to deviate from these ranges. It is concluded that desirable composition of tree fruits and berries and their products should primarily be achieved by selection among species rather than searching fors broadened variation within individual species.  相似文献   

18.
To evaluate the feasibility of long-term desert reforestation technology of mixed vegetation, cardon cactus (Pachycereus pringlei) seedlings from indoor and outdoor nurseries were planted in the field adjacent to one seedling of potential legume nurse trees: mesquite amargo (Prosopis articulata), yellow palo verde (Parkinsonia microphylla), and blue palo verde (Parkinsonia florida). Some of the planting holes were also supplemented with common dairy compost. Additionally, the combinations of legume tree–cactus were inoculated with either a consortium of desert arbuscular mycorrhizal (AM) fungi, plant growth promoting bacteria (PGPB; the diazotroph Azospirillum brasilense Cd, and the phosphate solubilizer Paenibacillus sp.), or a mixture of all. The field experiments were evaluated periodically during 30 months for survival and growth. Cardons reared in an outdoor screen house survived better in the field than those reared in a controlled growth chamber and hardened later outdoors. Association with any legume nurse tree increased survival and enhanced growth of untreated cardons. For cardons growing alone, application of either compost, AM fungi, and all the treatments combined increased survival. For these plants, no treatment affected plant growth during the first 3 months after transplanting. Later, all treatments, except for AM fungi, enhanced plant growth. However, only 2 years after transplanting the enhanced growth effect of AM fungi was also significant. In the presence of the legume nurse trees, transient positive effects on cardon growth were recorded. General evaluation after 30 months of cultivation showed that the treatments positively affected cardon growth when growing alone or in combination only with mesquite amargo but not with the other two legume trees. This study proposes that young legume trees have the capacity to enhance survival and growth of cardon cactus, depending on the legume cactus combination. Additional treatments such as compost or PGPB can either amplify the effect or else attenuate it.  相似文献   

19.
Detailed karyotypes and 4C DNA amounts have been studied in five cultivars of Cajanus cajan and 20 species belonging to Cajanus, Rhynchosia, Dunbaria, Flemingia and Paracalyx. C. cajan shows intraspecific variability and its karyotype is most similar to that of C. cajanifolius (sect. Cajanus) in the morphology and number of satellite chromosomes and the lack of any correlation between chromosome size within the complement and asymmetry. Karyotypes of C. lineatus and C. sericeus belonging to sect. Atylia are similar with respect to maximum r-index and the ratio of longest and shortest chromosomes in their respective complements. C. acutifolius (sect. Frutocosa) is distinct in having a very low ratio (1.44) between the longest and the shortest chromosomes, while in C. albicans, C. goensis, C. scarabaeoides (sect. Cantharospermum) there is no chromosome pair with r-index >2.0. C. mollis and C. volubilis (sect. Volubilis) show similarity with regard to ratio between the longest and the shortest chromosomes and a distinct chromosome pair with an arm ratio of 2.7 and C. platycarpus is distinct (sect. Rhynchosoides) in having the smallest ratio (1.36) between the longest and the shortest chromosomes. 4C DNA amounts in Cajanus and Rhynchosia vary between 3.28 pg to 11.69 pg and 4.92 pg to 11.13 pg respectively, while in Dunbaria, Flemingia and Paracalyx these vary between 4.70 and 7:06 pg. In the genus Cajanus karyotypic features and 4C DNA amounts agree with the sectional classification and bring out a close relationship between C. cajan and C. cajanifolius. This is supported by studies based on seed protein patterns, isozyme analysis, trypsin and chymotrypsin inhibitor patterns, RFLP and RAPD data and crossability relationships. A clear relation between DNA amount and abnormalities effecting the extent of pairing and recombination in interspecific hybrids shows the importance of this study in developing future breeding programme involving C. cajan and its wild relatives that are of potential value.  相似文献   

20.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号